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ABSTRACT 

The explosion in digital medical data makes it crucial to design intelligent assistants capable of interrogating this 

information reliably, quickly and contextually. In this article, we propose a novel comparative approach between two 

forms of knowledge representation: traditional tabular data and semantic ontologies. Based on the same clinical dataset 

concerning diabetic patients, we have implemented a dual structuring: a tabular version and an RDF ontology modelled 

with Protégé. An intelligent assistant, interfaced with the GPT-4 API, was designed to query both formats. The 

originality of our contribution lies in the experimental parallelisation of these two data models, through a standardised 

series of 300 questions, classified according to three levels of increasing complexity. This methodology enables us to 

objectively assess the robustness, responsiveness and inference capacity of each approach. The results are unequivocal: 

the ontology systematically outperforms the tabular format, with exact response rates ranging from 97% to 100%, 

compared with 34% to 81% for the tabular format. In addition, the ontological approach shows better tolerance of 

ambiguous queries and stability in semantic interpretation. Over and above performance, this study highlights the 

potential of knowledge graphs as an architectural foundation for future medical decision support systems. It also paves 

the way for hybrid systems that combine the accessibility of tables with the semantic power of ontologies - a 

perspective that has so far been little explored in the context of connected healthcare. 

Keywords: Medical ontology, Intelligent assistant, Knowledge representation, Connected medicine, XLSX/OWL 

comparison 

1. INTRODUCTION  

Diabetes is a heterogeneous metabolic disease characterised by chronic hyperglycaemia due to impaired 

insulin secretion, impaired insulin action, or both. It is classified as type 1 diabetes, type 2 diabetes, 

gestational diabetes and other types of diabetes. Diabetes has become a major public health problem 

because of its prevalence, its complications and the cost of treating them. The incidence of diabetes has 

risen sharply over the last 30 years, from 7% in 1990 to 14% in 2022. However, in 2019, the International 

Diabetes Federation projected that 783 million diabetics would be affected by 2045, and here we are, 

having already exceeded this estimate, with 830 million diabetics by 2022.[1],[2].This increase is 

particularly worrying in low- and middle-income countries, where healthcare systems are often ill-suited to 

providing continuous, personalised care. The situation in Africa is alarming. Some 54 million people in 

Africa are currently living with diabetes, and this figure could double in the next two decades [3]. It has 

been shown that it is the poor countries of Africa and Asia that will be the source of a large number of 

diabetics in the years to come, as a result of stress and an unbalanced diet. More than half of cases are 

neither diagnosed nor treated, exposing patients to severe complications, particularly cardiovascular, 

neurological and ophthalmological [4]. There are many obstacles to this: lack of qualified staff, absence of 

standard protocols, poor integration of medical data and high cost of treatment [5]. 
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In the Democratic Republic of Congo, according to the International Diabetes Federation (IDF), in 2024, 

the prevalence of diabetes among adults (aged 20-79) in the DRC is estimated at 7.7%, which represents 

around 2.86 million cases [22], yet the country has only 5 endocrinologists for a population of almost 120 

million, patients are not sufficiently educated, there are no structures to encourage physical activity to 

combat sedentary lifestyles, there are no technical facilities up to scratch, and there is no universal 

healthcare cover. Patients are crying out for help from a system that cannot guarantee them a better 

tomorrow. Faced with these challenges, technology could play an important role in improving care. In 

particular, intelligent assistants capable of interrogating medical databases appear to be promising solutions 

for improving monitoring, diagnosis and clinical decision-making [6], [7]. However, the effectiveness of 

these assistants depends heavily on the structure of the data they use. Tabular data (Excel, CVS, JSON, 

etc.) are still widely used because they are easy to access, but they have significant limitations in terms of 

relational logic and semantic interpretation [8]. For example, in an Excel file, it is difficult to represent 

implicit relationships such as ‘a patient is at risk in the absence of treatment and the presence of a 

complication’ [9]. This is where medical ontologies, particularly those described in OWL (Web Ontology 

Language), come into their own. They enable knowledge to be structured in the form of triplets (subject-

predicate-object) while capturing hierarchical, causal and contextual relationships [10], [11]. This 

formalism facilitates automatic reasoning using inference engines or SPARQL queries [12], [13]. The 

integration of ontologies with large language models (LLMs), such as GPT-4, offers even more powerful 

prospects. Thanks to their ability to understand natural language, LLMs can be coupled with knowledge 

graphs to provide contextualised and justifiable answers [14], [15]. Recent work has shown that fine-tuning 

these models with specialised medical corpora considerably improves the accuracy of the answers provided 

by the assistants [16], [17]. For example, Doumanas et al. have shown that GPT-4, when trained on 

ontological structures, can automatically generate coherent medical vocabularies [18]. The DRAGON-AI 

project has proposed a method for dynamically generating ontologies from clinical texts, facilitating the 

construction of reusable knowledge graphs [19]. Initiatives such as the Swiss Personalized Health Network 

(SPHN) and the Care and Registry Semantic Model (CARE-SM) have integrated these approaches into 

their information systems to improve the interoperability of healthcare data [20], [21]. Despite these 

advances, few studies have experimentally compared the performance of intelligent assistants using tabular 

versus ontological structures. This is precisely the aim of this study. Using a dataset of diabetic patients, we 

designed an intelligent assistant capable of querying both tabular and ontological data formats in order to 

observe the differences in performance as a function of the complexity of the questions asked. For our 

experiments we used a dataset in xlsx format and an ontology in OWL format.Three series of 100 

questions (simple, complex and very complex). The 300 medical questions were designed on the basis of 

the diabetes management standards established by the Congolese health authorities [23] and enriched by 

recent scientific recommendations on diabetes in Africa [24] [25]. For each series, we evaluated the 

relevance of the responses, the error rate and the average treatment time. The final objective is to 

demonstrate that ontologies, because of their logical and semantic structuring, are better suited to the 

development of intelligent medical assistance systems, particularly in sensitive contexts such as diabetes 

management. 

1.1. State Of The Art 

Several recent research projects have provided food for thought and guided the development of our 

approach, particularly in the field of semantic representation applied to diabetes monitoring. Zhou et al 

looked at the integration of ontologies into clinical decision support systems specifically designed for 

diabetes. Their study showed that formalised knowledge bases not only improved the accuracy of medical 

recommendations, but also enhanced the traceability of diagnostic decisions in complex situations [26]. In 

a complementary study, Flory et al (2025) compared the responses of the GPT-4 model with those of a 

group of 31 endocrinologists concerning the initial choice of treatment for diabetic patients. The results 

highlighted the model's ability to propose decisions comparable to those of clinicians, particularly in 
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contexts where the data are ambiguous or partial [27].Doumanas et al addressed a technical problem: how 

to use a large language model to automatically generate structured ontologies. They designed a pipeline 

exploiting GPT-4 to construct coherent graphs from textual descriptions, thus opening the way to hybrid 

forms of modelling combining linguistic intelligence and ontological rigour [18]. In the same spirit of 

semantic automation, the DRAGON-AI project, led by Toro et al, focused on the dynamic generation of 

ontologies from unstructured medical narratives. Using neural models to interpret these texts, they have 

developed a system capable of transforming medical records into usable knowledge graphs [28]. From an 

application point of view, Seneviratne et al. evaluated a device for simulating semantic queries in the field 

of clinical decision-making, in particular in the context of diabetic comorbidities. Their RDF platform was 

used to test intelligent agents on their ability to infer relevant responses from linked data [29]. Furthermore, 

the issue of interoperability in low-resource healthcare environments was at the heart of the study 

conducted by Palojoki et al. The authors demonstrate that the transition from traditional tabular 

representations to semantic structures not only improves the quality of medical reasoning, but also 

facilitates the integration of heterogeneous data from different systems [30]. In West Africa, Nacanabo et 

al. conducted an in-depth investigation into digital literacy and the challenges associated with the adoption 

of diabetes monitoring tools in low-infrastructure settings. Their study shows a persistent digital divide 

which hinders the appropriation of decision-support technologies [31]. Finally, Ouedraogo's team proposed 

a summary of the obstacles encountered in the management of type 2 diabetes in primary care in West 

Africa. Their review highlights the central role that intelligent semantic assistants could play in 

coordinating care pathways, detecting at-risk cases and recommending targeted actions [32]. Although 

each of these studies sheds light on a specific aspect of semantic integration in healthcare, none to date has 

experimentally compared a conventional tabular dataset with its ontological equivalent, which can be 

queried using the same intelligent assistant. It is precisely this gap that we are seeking to fill with our 

approach. 

2. METHODOLOGY 

2.1. Comparative experimental approach 

The methodology adopted in this article is based on a comparative experimental approach. Its objective is 

to evaluate the impact of the ontological and tabular knowledge representation format on the performance 

of an intelligent assistant responsible for answering medical questions from the same diabetes dataset. [33] 

[34] Its architecture is shown in figure 1. 

 

 

 

 

 

 

 

 

 

 

 

                                     Figure 1: Architecture of our intelligent assistant system 
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2.2. General design of the study 

This study is based on a comparative methodology aimed at empirically evaluating the relevance and 

performance of two approaches to representing medical knowledge in the context of connected medicine: a 

tabular approach (based on a structured dataset) and an ontological approach. The main objective is to 

determine whether the semantic structuring of data via an ontology improves the quality of responses 

produced by an intelligent assistant, compared with non-semantically enriched data [26], [18]. 

The experimental design is based on a mirrored protocol, where the same clinical dataset was queried using 

two modalities: 

(1) direct interrogation of the dataset using filters and conditional formulas in Python (Pandas), 

(2) semantic interrogation of the same tabular dataset transformed into an ontology using SPARQL queries 

via Jena Fuseki [35].Table 1 below provides a comparative summary of the two representation and 

interrogation paradigms used in this study. 

Table 1: Summary comparison of the two experimental methods in terms of format, knowledge structure, inference capacity and 

interrogation tools. 

Criteria Tabular approach Ontological approach 

Data format Structured spreadsheet (.xlsx) RDF/OWL Ontology 

Query language Conditional formulas(Pandas) SPARQL 

Knowledge structure Linear, flat Hierarchical, relational 

Capacity for inference Limited High (via reasoning) 

Main tool Python Pandas Jena Fuseki + RDFLib 

Interoperability Low High 

 

To ensure rigorous and consistent evaluation, an intelligent conversational assistant has been developed to 

act as a questioning interface. This is coupled to the GPT-4 API, which is responsible for automatically 

reformulating natural language questions into formal queries adapted to each data structure (formulas or 

SPARQL). Interaction is via a medical user-oriented human-machine interface (HMI) [36], [37]. 

The design of this study is based on four fundamental methodological pillars: 

- Standardisation of input data: a dataset in xlxs format, containing data from 100 diabetic patients, was 

used as a starting point. This file was cleaned, structured and then exported in RDF/OWL to ensure perfect 

correspondence between the two formats. 

- Symmetry of questioning: a corpus of 300 questions covering simple to complex medical cases was 

developed. These questions were formulated independently of the data format, then injected into the wizard 

for double execution (XLSX vs OWL). 

- Automated processing: all interactions, from reformulation to response, were automated to avoid any 

human bias. The system generates queries, executes searches, times response times and records results. 

- Traceability and comparative analysis: for each question, the results of the two approaches were 

recorded (raw response, validity, response time) and then compared quantitatively and qualitatively using 

objective indicators. This system was designed to answer a central question: does an ontology really 

improve an assistant's ability to provide relevant, rapid and interpretable medical responses based on local 

data? 

2.3. Data sources 

The dataset used in this study is based on a representative clinical database constructed from the 

information of 100 diabetic patients collected at the Centre Hospitalier HN, located in the commune of 

Mont-Ngafula in Kinshasa. This source file, prepared in Microsoft Excel (.xlsx), reflects the types of data 

commonly observed in electronic medical records (EMRs), incorporating biometric, therapeutic and 
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clinical variables essential to the analysis. Each record (row) represents a unique patient, and each column 

corresponds to a key medical property. Attributes included include: 

- Patient identifier ;- Sex, age ;- Type of diabetes ;- Blood glucose (fasting, postprandial) ;- Body mass 

index (BMI);- Current treatment (insulin, oral antidiabetics, diet alone, etc.);- Presence of complications 

(peripheral neuropathy, autonomic neuropathy, retinopathy, nephropathy, ischaemic heart disease, 

ischaemic stroke, obliterative arterial disease of the lower limbs, fri);- Most recent follow-up date. 

 

The data was selected to cover both simple clinical cases (direct question on one value) and more complex 

cases involving several cross-referenced factors. To enable a fair comparison with a semantic environment, 

this xls format file was manually transformed into an OWL ontology. Modelling was carried out in Protégé 

5.6, using ontology engineering principles: structuring into classes (Patient, TypeDiabete, imbalance or 

revelation factor, complication, treatment, etc.), relationships (aTreatment, presentComplication, 

aGlycemia, etc.) and instances. Each xlsx record was converted into RDF triples that could be used by 

reasoning engines such as Jena. Figure 2 illustrates this transformation between a tabular record in xlsx 

(Excel) format and its semantic equivalent represented in RDF/OWL, as used in our experimental model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Illustration of the conversion of an Excel record to an RDF/OWL model. 

 

This dual structuring ensures that the two formats contain exactly the same information, but encoded 

according to two radically different paradigms. In this way, any difference in the performance of the 

intelligent assistant will be directly attributable to the knowledge representation model, and not to the data 

itself. The use of ontologies in clinical decision support systems (CDSS) has been shown to improve the 

automation and transparency of the reasoning process, facilitating the generation of interpretable and 

accurate treatment recommendations [26]. Studies have explored the potential of large language models 

(LLMs) to automate the generation of OWL ontologies from natural language descriptions, introducing 

new elicitation techniques for automated ontology development [36]. Furthermore, ontology engineering 

plays a crucial role in structured knowledge modelling and management, with research evaluating the 

performance of language models such as GPT-4 and Mistral 7B in efficiently automating ontology 

engineering tasks [18]. Finally, the interoperability of electronic health records is essential to improve care 

coordination and patient outcomes, with conceptual frameworks proposed to address the associated 

technical and semantic challenges [35]. 



Vol. 19, No. 2 2025 

DOI: https://doi.org/10.14232/analecta.2025.2.46-66 

 

51 

 

2.4. Implementation of the intelligent assistant 

To ensure consistent and automated interaction with the two representation models (XLSX and OWL), an 

intelligent assistant has been designed. This assistant is based on a modular architecture built around three 

main components: (1) a question entry interface, (2) a linguistic interpretation engine based on the OpenAI 

GPT-4 API, and (3) two independent query modules: one for the XLSX format dataset, the other for the 

RDF/OWL graphs. 

a) Interpreting natural language queries 

The user interacts with the system via a natural language interface, simulating a doctor-assistant interface. 

The question entered is transmitted to GPT-4 via its API, with an explicit instruction to produce either a 

Python/Pandas formula for tabular processing or a SPARQL query for ontological processing, depending 

on the context selected. Studies have shown that GPT-4 can improve the accuracy of clinical decisions, in 

particular by assisting doctors in specialised fields such as nephrology [38]. In addition, GPT-4 has 

demonstrated its ability to generate precise SPARQL queries from natural language questions, thus 

facilitating the interrogation of medical knowledge graphs [39]. Figure 3 below illustrates an interaction 

with the interface developed. The assistant, powered by GPT-4, reformulates the user query in natural 

language and returns a medically contextualised response, automatically extracted from the data file. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Conversational medical assistant interface. The user enters a question in natural language (‘Give me a list of patients 

with suspect blood sugar’); the system identifies the medical criterion (blood sugar > 126 mg/dL) and returns a structured 

response extracted from the data file. 
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b) Excel processing via Python 

The Excel module is based on the Pandas library, which loads the .xlsx database, applies filters, aggregates 

data or returns targeted values. The process is sequential and deterministic. 

The use of Pandas for healthcare data analysis is well established, offering powerful tools for cleaning, 

manipulating and analysing clinical datasets [40]. 

c) Ontological processing via SPARQL 

The ontology module is based on two tools: 

- RDFLib for loading and manipulating OWL files locally, - SPARQLWrapper for querying a remote 

triplestore (via Jena Fuseki). The SPARQL queries generated by GPT-4 are executed dynamically, and the 

results are formatted for display in a way that is readable by the user. Research has evaluated the ability of 

large language models to generate valid SPARQL queries, highlighting their potential in querying complex 

knowledge graphs [38]. 

d) Timing and recording of results 

The following information is automatically recorded for each question asked:- the format used (Excel or 

OWL),- the query generated by GPT-4,- the response returned,- the processing time (measured by 

time.time()),- relevance assessment (correct, incorrect, partially correct). 

All this data is fed into a database of results used in section 4 for comparative statistical analysis. 

Figure 4 below summarises the entire process of handling a query by the intelligent assistant, from 

receiving the question in natural language to providing the answer via the user interface, via the choice of 

engine, interpretation by GPT-4, execution and reformulation of the answer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Functional flowchart of the conversational medical assistant. This diagram describes the entire process of handling a 

medical question, from input to response, depending on whether the database queried is tabular (Excel) or semantic (OWL). 
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2.5. Construction of the test instrument 

In order to rigorously evaluate the performance of the intelligent assistant, a standardised test instrument 

was developed, comprising a set of 300 questions. These questions were classified according to three levels 

of complexity, defined as follows: 

- Simple questions: These questions involve a single entity or criterion, without requiring complex 

reasoning. They can be resolved by direct information extraction. For example: "What is the weight of 

patient P014? 

- Complex questions: These require a combination of several criteria or cross-filtering. For example: 

"Which patients have blood sugar levels > 180 and are not taking insulin? 

- Very complex questions: These questions require aggregation operations, statistical calculations or 

advanced logical inferences. For example: "What percentage of type 2 patients on insulin treatment have a 

complication? 

This classification is inspired by recent work on querying complex knowledge bases, which distinguishes 

between simple and complex questions based on the number of entities involved, the multiple relationships 

and the logical operations required to answer them [38]. 

a) Breakdown of questions 

300 questions from the test sample were developed manually from the clinical dataset. They were divided 

into three categories according to their level of complexity, in line with a typology used in the literature on 

question-answer systems and semantic mining. Table 2 below shows this breakdown 

Table 2: Breakdown of the 300 questions used to assess the assistant according to three levels of complexity. 

Level Number of questions Description 

Simple 100 Direct questions on a single property 

Complex 100 Queries with multiple conditions (e.g. AND, OR, NOT) 

Very complex 100 Queries requiring group, calculation or inference operations 

b) Development of the validation framework 

We have created a master reference file, containing for each question: 

-The question ID; -The level of complexity; -The expected answer;-The target parameters (column 

or property targeted);-An automatic evaluation field (0 = false, 1 = correct). 

This repository was used as a basis for comparing the answers given by the wizard with the actual results 

extracted manually. 

c) Performance metrics collected (formal definitions) 

The evaluation of intelligent assistant performance is based on standardised metrics, widely used in 

question and answer (QA) systems and validated by recent studies. 

2.6. Relevance of the response (Accuracy) 

Relevance measures whether the response generated by the system corresponds to the expected reference 

response. It is defined by : 

𝑃𝑒𝑟𝑡𝑖𝑛𝑒𝑛𝑐𝑒 = 
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑁𝑡𝑜𝑡𝑎𝑙
 

• 𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡 −  Number of correct answers 

• 𝑁𝑡𝑜𝑡𝑎𝑙 −  Total number of questions evaluated 
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This metric is commonly used to evaluate QA systems, as highlighted in a study on the evaluation of 

ChatGPT as a question-answer system [38]. It was with this in mind that we implemented our heuristic, 

which consists of weightings of 1 for correct answers and 0 for incorrect answers. 

2.7. Average Response Time 

The average processing time per question is given by : 

 

𝑇̅ = 
1

𝑁
  ∑ 𝑇𝑖

𝑁
𝑖=1  

 
Ti −Response time for question i (in seconds) 

N −Total number of questions answered 

 

This metric is essential for assessing the responsiveness of the system, as discussed in recent guides on 

performance metrics for AI models [41]. 

2.8. Success rate by level of complexity 

For each category of question (simple, complex, very complex), the success rate is : 

 

            𝑅𝑎𝑡𝑒𝑠𝑠𝑢𝑐𝑐𝑒𝑠𝑠
(𝑘)

=  
𝑁𝑐𝑜𝑟𝑟𝑒𝑐𝑡

(𝑘)

𝑁𝑡𝑜𝑡𝑎𝑙
(𝑘)  × 100  

k ∈ {simple,complex,very complex} 

This approach enables a detailed analysis of performance according to the complexity of the questions, 

based on established practices in the evaluation of QA systems [42]. 

2.9. xlxs vs owl concordance rate 

This rate measures the proportion of questions for which the two systems give the same answer: 

 

𝐶𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒 = 
𝑁𝑠𝑎𝑚𝑒 𝑎𝑛𝑠𝑤𝑒𝑟𝑠

𝑁𝑡𝑜𝑡𝑎𝑙
 × 100 

d) Automation of the experimental protocol 

An automated script in Python ensures : 

- Reads the 300 questions per series of 100 from a .txt file,- Automatic transmission to the API (GPT-4) 

with specific instructions,- Reformulation into a Pandas formula or SPARQL query,- Execution of the 

query,- Record the result, response time and format,- Comparison with the repository,- Saving to a log file. 

The experimental process set up to evaluate the intelligent assistant is based on a complete automation 

loop, with no human intervention. The experimental pipeline shown in Figure 5 below illustrates the 

sequential stages of execution, from reading the questions to collecting and recording the results. This 

protocol guarantees the reproducibility, rigour and objectivity of the evaluation. 
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Figure 5: Automation pipeline for the experimental protocol. Each question is extracted from a text file, reformulated 

automatically by GPT-4 according to the type of data (Excel or OWL), run on the appropriate engine (Pandas or SPARQL) and 

then evaluated in real time. The results are saved for comparative analysis. 

2.10.Assessment criteria 

In order to objectively compare the performance of the intelligent assistant according to the two 

interrogation methods (Excel vs. OWL), a set of evaluation criteria was defined. These criteria aim to 

measure not only the accuracy of the responses, but also their speed, their robustness in the face of 

complexity, and their ability to produce a response that can be used by a healthcare professional. 

a) Accuracy of answers 

Each response generated is compared with a validated reference response. Two levels are used: 

- Correct response: exact match with the reference ;- Incorrect response: content or target error 

 

The evaluation is binary (1/0) depending on statistical requirements. 

      b) Complexity tolerance 

This criterion measures the robustness of the system according to the level of difficulty of the question 

(simple, complex, very complex). A robust system should maintain a high success rate, even on the most 

demanding cases. 

c) Average response time 

Processing time is measured for each question from the moment the API call is triggered until the 

structured response is received. This time is then averaged by level of complexity and by basic format. It 

reflects the system's operational efficiency. 

d) Concordance rate between Excel and OWL 

For each question, the wizard queries the xlsx format dataset and the owl ontology database separately. The 

results are compared to assess their consistency. In particular, this helps to identify cases where : 

- Both systems give the same answer,- Only one system responds correctly,- Both fail. 
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This concordance rate is crucial for measuring the potential ontological advantage in complex or 

ambiguous cases. 

e) Linguistic quality of the response 

Even if the response is correct, it must be intelligible to a non-technical user (doctor, nurse, etc.). This 

criterion measures the system's ability to render a clear and legible response, with a natural, complete and 

unambiguous formulation. Table 3 below summarises these criteria and the methods used to measure them. 

Table 3: Summary of the criteria used to benchmark the intelligent assistant. These indicators measure the accuracy of responses, 

their speed, their adaptability to complexity, their inter-format consistency and their final readability. 

Criteria Description Type of measurement 

Accuracy of answer Check that the answer matches the reference answer Binary or weighted score 

(1/0/0.5) 

Tolerance of 

complexity 

Evaluates the ability to respond according to level 

(simple, complex, very complex) 

Success rates by level  

Average response 

time 

Time between sending the question and receiving the 

structured response 

Average time (in 

seconds) 

Excel/OWL 

concordance rate 

Compares the answers obtained for the same question 

using the two formats 

Percentage of agreement 

Linguistic quality  Appreciates the clarity, legibility and wording of the 

response generated 

Subjective score or 

annotation 

3. MATERIALS AND METHODS 

The system was implemented using a coherent set of software and hardware technologies, enabling data 

processing, ontological modelling, semantic querying, integration of a language model and visualisation of 

results. Table 4 below shows these components, their respective roles and their contribution to the 

experimental pipeline. 

Table 4: Software and hardware technologies used to develop, run, visualise and evaluate the experimental system. 

Element Main function Use 

Ordinateur portable HP Local execution material Development and execution of scripts 

Python 3.11 Main development language Processing scripts, automation 

OpenAI GPT-4 API Language model used to reformulate queries 

and generate responses 

Interpretation of questions, answers 

Pandas Handling tabular data (Excel) Filtering, aggregation, extraction 

RDFLib Local manipulation of RDF/OWL graphs Ontology loading and querying 

SPARQLWrapper Interface for SPARQL queries to triplestore OWL query via Fuseki 

Apache Jena Fuseki RDF triplestore server Receiving and executing SPARQL 

queries 

Protégé 5.6 Ontological modelling tool Diabetes ontology design 

Matplotlib Data visualisation library Results graphs 

Google Colab Python runtime cloud environment Development, testing and visualisation 

Microsoft Excel Tabular data source Starting base, test in tabular mode 

Visual Studio Code Code editor Local development 
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4. RESULTS AND DISCUSSION 

The comparative evaluation between the two interrogation systems, one based on tabular data and the other 

on an ontology, was carried out on a total of 300 questions, divided equally into three levels of complexity. 

The results obtained were analysed according to two main criteria: response accuracy and processing time. 

4.1. Accuracy of answers 

a) Simple questions 

In order to evaluate the performance of the system in the most elementary cases, a series of 100 simple 

questions were submitted to the assistant. These questions consisted of a single criterion, with no cross-

reasoning or combined conditions. Table 5 shows that the owl system answered 100% of the simple 

questions correctly, compared with 81% for the xlxs dataset 

Table 5: Comparison of the success rate of the query system on simple questions. The OWL ontology approach achieves 100% 

correct answers, compared with 81% for the system based on a tabular dataset (XLS). 

N° Indicators Valeurs 

1 Total questions analysed 100.0 

2 Correct OWL answers 100.0 

3 Incorrect OWL answers 0.0 

4 Correct Excel answers 81.0 

5 Incorrect Excel answers 19.0 

6 Rate of correct OWL responses (%) 100.0 

7 Rate of incorrect OWL responses (%) 0.0 

8 Rate of correct Excel responses (%) 81.0 

9 Rate of incorrect Excel responses (%) 19.0 

Figure 6 provides a visual illustration of the difference in performance between the two approaches on 

simple questions. There is a clear superiority of the OWL ontology as early as the base cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Comparative results on simple questions. The model based on the OWL ontology shows consistent accuracy, while Excel 

is affected by errors due to the tabular structure. 
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b) Complex questions 

The second group of 100 questions was designed to test the system's ability to manage combined queries 

containing several conditions (e.g. cross thresholds, exclusions, logical relationships). Table 6 shows the 

comparative performance of Excel and OWL on this series. 

Table 6: Success rate on complex questions - XLXS vs OWL 

N° Indicator Value 

1 Total questions 100.0 

2 Correct OWL answers 98.0 

3 Incorrect OWL answers 2.0 

4 Correct Excel answers 46.0 

5 Incorrect Excel answers 54.0 

6 Rate of correct OWL responses (%) 98.0 

7 Rate of incorrect OWL responses (%) 2.0 

8 Rate of correct Excel answers (%) 46.0 

9 Rate of incorrect Excel responses (%) 54.0 

Figure 7 illustrates the marked divergence between the two systems on complex questions. The gap widens 

as soon as we move away from linear data extraction to conditional reasoning. 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Figure 7: Visual representation of success rates for the 100 complex questions. OWL, supported by a SPARQL engine and a 

hierarchical knowledge structure, remains robust. Excel shows its structural limitations here. 

c) Very complex questions 

Table 7 shows that even on very complex questions, OWL maintains an excellent performance with 97% 

of answers correct, compared with 34% for Excel. This last group of 100 questions was designed to 

evaluate the ability of systems to handle queries requiring inference, aggregation operations or statistical 

cross-reasoning. 
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Table 7: Success rate on very complex questions - Excel vs OWL 

N° Indicator Value 

1 Total questions 100.0 

2 Correct OWL answers (1) 97.0 

3 Incorrect OWL answers (0) 3.0 

4 Correct Excel answers (1) 34.0 

5 Incorrect Excel answers (0) 66.0 

6 Rate of correct OWL responses (%) 97.0 

7 Rate of incorrect OWL responses (%) 3.0 

8 Rate of correct Excel answers (%) 34.0 

9 Rate of incorrect Excel responses (%) 66.0 

 

Table 7: Comparative performance on questions requiring complex reasoning (e.g. calculations, 

accumulation, deductions). The OWL approach achieved 97% correct answers, confirming its semantic 

power, while Excel fell to 34%, affected by the absence of a reasoning engine. Figure 8 graphically 

represents the performance gap between the two formats when faced with questions involving several 

levels of abstraction. These results highlight the impact of the representation structure on automated 

deduction capabilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Visual results for questions with a high level of complexity. The OWL ontology, via SPARQL and logical axioms, 

provides a rich and faithful interpretation of implicit relationships. Excel reaches its formal limits here. 

4.2. Response time 

In addition to the accuracy of responses, processing time is a crucial criterion for assessing the performance 

of an intelligent assistant, particularly in clinical contexts where responsiveness is essential. Response time 

is the time elapsed between receiving the question and receiving the structured response. [1] 

The time results were measured automatically for each question and grouped according to the three levels 

of complexity. 

[1] Organisation for Economic Co-operation and Development (OECD). Rethinking health system 

performance assessment: a renewed framework. OECD Health Policy Studies, OECD Publishing, Paris, 

2024. Available at 
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Figure 9: Response time curve for simple questions with xls dataset 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Response time curve for complex questions with xlsx dataset 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                 Figure 11: Response time curve for very complex questions with xls dataset 
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                          Figure 12: Response time curve for simple questions with OWL 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: Response time curve for complex questions with OWL 

Analysis of the response times reveals a quasi-linear trend in average time as the complexity of the 

questions increases, both in the tabular format (xls) and in the ontological format (owl). However, two 

major findings emerge: - The tabular format performs faster for simple questions, because access to the 

cells is direct and inexpensive, but its performance deteriorates sharply with complexity. - The ontological 

format, on the other hand, shows greater temporal stability, even for complex questions, thanks to a pre-

defined logical structure via RDF triples and well-indexed SPARQL queries. Table 8 shows the average 

response times measured for each of the two systems (Excel and OWL), as a function of the complexity of 

the questions asked. These data allow us to compare not only the logical performance, but also the 

operational responsiveness of each approach in a medical assistance context. 

                    Table 8: Average response times (in seconds) by level of complexity - XLS vs OWL 

Level of complexity Average Excel time Average time OWL 

Simple ~0.8 s ~1.2 s 

Complex ~2.6 s ~1.5 s 

Very complex ~4.8 s ~2.3 s 

Table 8: Average response time observed for each modality (Excel and OWL) as a function of the level of 

complexity of the questions. It can be seen that the Excel system is faster on simple cases, but deteriorates 

sharply with complexity. The OWL ontology, on the other hand, offers more stable performance, even for 

very complex questions. In order to summarise the quantitative and qualitative observations from the 
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comparative analysis, the table below summarises the respective performances of the two approaches 

(Excel and OWL Ontology) according to several key criteria 

Table 6: Performance comparison between tabular and ontological approaches 

Assessment criteria Tabular approach Ontological approach 

Success rate (simple questions) 81% 100% 

Success rate (complex questions) 46% 98% 

Success rate (very complex questions) 34% 97% 

Average response time (single) ~0.8 s ~1.2 s 

Average response time (complex) ~2.6 s ~1.5 s 

Average response time (very complex) ~4.8 s ~2.3 s 

Capacity for inference Non Oui 

Tolerance of ambiguity Faible Élevée 

Interoperability of responses Limitée Élevée 

Temporal stability Instable Stable 

Adaptability to natural demands Limitée Élevée 

Table 6: Consolidated comparison of the two query approaches according to the main experimental 

indicators (precision, responsiveness, interpretability, inference, robustness). The results show a general 

superiority of the ontology approach, particularly for complex and semantic queries.The results obtained as 

part of this experiment reveal significant differences in performance between the two query approaches: 

one based on a tabular representation (xls dataset), the other on a semantic ontology (owl). This section 

provides a critical and interpretative reading of these results, by cross-referencing the empirical 

observations with theoretical contributions from the literature. 

4.3. Structural superiority of the ontological approach 

The OWL ontology has emerged as a more robust solution, achieving 97% to 100% accuracy depending on 

the level of complexity. This performance is not surprising. It is consistent with the work of Noda et al 

[38], who demonstrate that the integration of semantic reasoning significantly improves the quality of the 

answers provided by an intelligent agent. Unlike xls, the ontology explicitly encodes relationships between 

concepts (e.g. ‘aTreatment’, ‘aTypeDiabetes’), enabling complex inferences to be made, including in the 

case of missing or partial data. In very complex questions (several criteria, nested conditions, implicit 

data), xls only produced 34% of correct answers, compared with 97% for owl. These results confirm the 

findings of Lan et al [44], according to which systems based on knowledge graphs perform better for 

solving complex queries in medicine. 

4.4. Reactivity versus interpretability 

Xls shows shorter response times for simple questions (~0.8 s), but its efficiency decreases rapidly with 

complexity, reaching an average of ~4.8 s for very complex questions. On the other hand, OWL offers 

appreciable temporal stability (~2.3 s for very complex questions), largely thanks to the optimisation of the 

SPARQL and RDFLib engines. However, OWL's superiority is not limited to performance. The ontology 

also makes it possible to provide richer, more interpretable and nuanced answers, incorporating 

justifications or cases of uncertainty (e.g. ‘missing data’, ‘not measured’). This behaviour is essential in a 

medical context, where every piece of data influences clinical decision-making. 

4.5. Ambiguity tolerance and logical robustness 

One of the most significant contributions of the ontological approach is its ability to manage ambiguity and 

semantic variability. When a practitioner asks a naturally formulated question (e.g. ‘which patients have no 
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treatment but present a complication?’), the ontology is able to recognise the implicit relationships between 

concepts and deduce a coherent answer. xls, on the other hand, relies on rigid literal correspondences and 

does not tolerate reformulation or logical inference, as shown in the work of Shen et al [45]. 

4.5.1. Towards reasoned hybridisation? 

Despite its limited precision, the tabular approach remains useful in certain situations, particularly for non-

technical users who want to explore a dataset quickly. Its accessibility, ease of use and speed of execution 

make it a complementary solution, but not a sufficient one. The results argue in favour of a well thought-

out hybridisation of the two paradigms: Xls could serve as a user-friendly input interface, while the OWL 

ontology would form the semantic core of the reasoning. This combined architecture would reconcile 

accessibility and reliability, as suggested by the literature on decentralised intelligent systems [43]. 

4.5.2. Implications for connected medicine 

In a context of connected medicine, where data is massive, heterogeneous and sometimes incomplete, 

semantic structuring is becoming an imperative. Medical ontologies such as the one developed here 

facilitate not only intelligent interrogation of patient records, but also interoperability between platforms, 

detection of weak signals and personalised monitoring. The recommendations of the OECD [46] are in line 

with this, emphasising that the responsiveness and reliability of medical information processing systems 

are now fundamental criteria in the evaluation of public health policies. 

5. CONCLUSIONS 

This comparative study enabled us to demonstrate, empirically and rigorously, that the knowledge 

representation format has a strong influence on the performance of an intelligent assistant in the medical 

field. By interrogating the same set of diabetic data structured successively in tabular form (xlsx) and in 

ontological form (OWL), we were able to highlight the strengths and limitations of each approach. The 

results show that the ontological approach far surpasses the tabular approach in complex contexts. On 

questions requiring inferences, aggregations or cross-reasoning, the assistant using OWL achieves up to 

97% correct answers, compared with just 34% with xlsx. In addition, the ontology-based system offers 

superior temporal stability and greater tolerance of semantic variability, two major advantages in clinical 

environments where formulations can vary from one practitioner to another. The tabular approach (xlsx), 

although faster in simple cases, shows its limitations as soon as the logic becomes multi-criteria or the 

requirement for interpretability increases. These structural limitations underline the growing importance of 

semantic representations in connected medicine, where the accuracy, reliability and traceability of 

decisions have become ethical and operational imperatives. Beyond technical performance, this article 

highlights a paradigm shift: intelligent assistants must no longer simply respond quickly, they must 

understand, deduce and justify. This is precisely what a well-designed ontology, enriched with explicit 

logical relations and searchable via a robust semantic engine, makes possible. This article paves the way 

for hybrid intelligent assistants that can be extended to other chronic pathologies and have an automatic 

explanation capability, which is essential for medical confidence. 
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