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1 Introduction

Malaria, one of the mosquito-borne diseases, remains a major public health problem worldwide,
particularly in African countries (CDC,|2022;|WHO, |2023). Malaria is treatable and it can cause
death of humans, particularly children aged under 5 years and pregnant women. It originates
from the Plasmodium parasite, a protozoan that spreads in humans after being bitten by infected
adult female Anopheles mosquitoes. The five species of Plasmodium parasites that can infect
humans are Plasmodium falciparum (responsible of malaria severe cases), Plasmodium malariae,
Plasmodium vivax, Plasmodium ovale, and Plasmodium knowlesi (Shi et al., 2024). In Africa,
the African Leaders Malaria Alliance (ALMA) reveals that: the number of threats is still growing
to achieving the goal of eliminating malaria in Africa by 2030 (ALMA| |2023)). The same source
reveals that across the continent, 1.27 billion individuals are at risk of malaria infection. Amongst
this population, there were 186 cases per 1,000 persons and 47 deaths per 100,000 persons.
The use of mathematics approach for describing the complex mechanism of malaria trans-
mission dynamics constitutes a helpful tool for better understanding and analyzing the spread
of the disease in order to advice policymakers. Based on this fact, several rich models (Basir et
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al., 2025} Djidjou-Demasse et al., [2020; Fatmawati et al.l 2021; |Gellow et al. 2023} |Jaleta et al.|
2025} [Kaboré et al., 2024} [Keno et all [2022; [Mangongo et al., 2022} |Olaniyi et al.| |2023], 2022,
2020; |Qu et al.l2025; Rajnarayanan et al., 2025; |Sualey et al., [2024; Wako et al., [2025)) have been
developed by researchers from the basic SEI, SEIS and SEIRS schemes. For example, |Jaleta et
al. (2025) discussed a mathematical model for malaria transmission dynamics. In their paper,
authors analyzed the optimal control of the effect of treatment-seeking behaviors on the spread
of malaria. |Qu et al.| (2025)) analyzed a vaccination mathematical model of malaria transmission
with seasonality and immune feedback. Rajnarayanan et al.| (2025) analyzed a model for malaria
using data-driven approach. In their paper, authors presented a new framework for modeling
malaria transmission dynamics by integrating temperature and altitude-dependent transmission
functions into a compartmental SIR-SI model. Wako et al. (2025) developed a mathematical
model to analyze malaria transmission dynamics. In their model, they account for complica-
tions like severe anemia and organ dysfunction, which impact disease outcomes and health-care
systems. Many aspects were considered in these models, such that: the environmental, climate
factor in the life cycle of mosquito, partial immunity, social-hierarchical structure of humans,
the relapse of ignorant infected humans, the impact of Wolbachia bacteria in reducing the size
of mosquito population in their formulations. All of them have guided interventions such as
insecticide-treated nets (ITNs), indoor residual spraying (IRS), antimalarial medications (ACT)
and health education and community engagement (Akowe et al., [2025).

All the above mentioned intervention strategies focus on optimizing vector control and the
treatment of symptomatic cases (Andolina et al., 2021)). However, in the context of malaria, some
infectious individuals are asymptomatic while others are symptomatic (Bousema et al., [2014;
Galatas et al.l 2016; Lindhlade et al.l [2013; Prusty et al., |2021)). /Andolina et al. (2021) stated
that symptomatic malaria cases represent only a small proportion of all Plasmodium infections.
In addition, Tadesse et al. (2018) confirm that in the low-endemic setting aiming for malaria
elimination, asymptomatic infections were highly prevalent and responsible for the majority
of onward mosquito infections (Andolina et al., 2021)). Therefore, the early identification and
treatment of asymptomatic infections might accelerate elimination efforts. The asymptomatic
cases of malaria are often dues to submicroscopic, which are often below the threshold of de-
tection by microscopy or conventional malaria rapid test (MRT) (Andolina et al., 2021; Tadesse
et al., 2018]). Banegas et al.| (2024) discovered the existence of asymptomatic malaria reservoirs
in Honduras, which contribute to disease transmission and poses a challenge for elimination
efforts. Furthermore, the biology of Plasmodium reveals that, Gametocytes typically progress
through five distinct developmental stages. During the first three stages, these sexual forms are
sequestered in tissues, making them potentially vulnerable to drugs targeting the asexual stages
of the parasite. By stage 4, they re-enter the bloodstream, and at stage 5, mature Gametocytes
circulate freely and are resistant to most treatments, except for the 8-aminoquinolines (Barnes
& White, 2005; Pongtavornpinyo et al.,|2008]). To support this, the most expansive agent caused
malaria, is characterized by the accrual of a reservoir of dormant parasites known as Hypno-
zoites (Mehra et al., [2014). They can remain in a dormant state for many days (one month for
example) before reactivating to cause a relapse of malaria.

Considering these facts, some authors designed rich mathematical models to advice policy-
makers for the control of malaria. |Aguilar & Gutierrez| (2020)) studied a mathematical model for
malaria transmission dynamics by accounting for asymptomatic carriers. Authors stated that,
the correct understanding of the influence of asymptomatic individuals on transmission dynamics
will provide a comprehensive description of the complex interplay between transmission agents.
Beretta et al.|(2018) extended the model of Aguilar & Gutierrez (2020) by structured the human
population into two age groups. Recently, |Shi et al.| (2024]) analyzed a reaction-diffusion malaria
model accounting for asymptomatic carriers. In their paper, authors introduced a time peri-
odic reaction-diffusion model for malaria spread, incorporating spatial heterogeneity, incubation
periods, symptomatic and asymptomatic carriers. To incorporate resistance to anti-malarials,
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Hamilton et al. (2023)) introduced a mathematical model in 2023 to assess the effectiveness
of vaccination and anti-malarial resistance across 42 African countries. Maithya et al. (2025)
studied a mathematical malaria model by focusing on the effects of partial immunity, strong
immunity, drug resistance and intensive treatment.

Due to the significance of asymptomatic carriers and the development of resistant strains in
the transmission dynamics of malaria, in this paper we aim to develop a mathematical model to
evaluate the impact of asymptomatic infectious and those who develop resistant strains in the
dynamics transmission of malaria. We consider, in this paper, two types of individuals developing
resistant strains. The first are those who, after treatment, continue to carry Plasmodium in their
blood in a dormant form, without any symptoms and without being infectious; we call them
”ignorant infected”. The second are those who, after treatment, still have Plasmodium in their
blood along with clinical signs. They are therefore infectious, and we refer to them as ”infected
with resistant strains”.

The rest of the paper is organized as follows: In the next section, we state assumptions and
formulate the mathematical model. In section 3, analytical analysis is done, starting by the well
posedness, equilibrium of the proposed model and computing the basic reproduction number and
analyzing the local and global stability of equilibrium points. In section 4, sensitivity analysis
and numerical simulations are done to support our analytical analysis. We end the paper by
some concluding remarks and discussions in section 5.

2 Formulation of the model

We consider two populations, the human and mosquito populations. The total human population
at time ¢, Np(t) is divided into seven mutually exclusive compartments, the susceptible, exposed,
asymptomatic, symptomatic, recovered, ignorant infected and infected with resistant strains
compartments, denoted by Sy, Ep, Ap, I, Ry, M, and T}, respectively. We assume that only
individuals in the M}, compartment can relapse at the rate v, as they carry the Plasmodium
parasite without having been treated. At any time ¢, the total humans population follows this
relation:
Np(t) = Su(t) + En(t) + Ap(t) + In(t) + Ra(t) + Mu(t) + Th(t). (1)
The total mosquito population at any time ¢, Ny, (¢), is divided into three mutually exclusive
compartments, following the common SEI scheme. We have the susceptible, exposed and infec-
tious compartments, denoted by S,,, E,,, and I,,, respectively. At any time ¢, the total mosquito
population is governed by:

Nm(t) - Sm(t) + Em(t) + Im(t)- (2)

Figure [1] gives the flow diagram of the transmission mechanism of the proposed model. The
susceptible human can contract malaria through a bite of an infectious mosquito. Considering
the average number of a mosquito bites, n and the probability that a bite by an infectious
mosquito to a susceptible human lead to an infection of this susceptible human, c,,, therefore,
the force of infection of mosquito to human is given by:

/\h = thn]I\ZLL. (3)

Additionally, susceptible mosquito can become infected when it bites an asymptomatic,
symptomatic or resistant strains infected humans. Considering the average number of a mosquito
bites n, and the probability that a bite by a susceptible mosquito to a symptomatic, asymp-
tomatic or resistant strains infected lead to an infection of this susceptible mosquito, ¢y, there-

fore, we define the force of infection of human to mosquito by:

A I T;
Am = chmn—( ht h h). (4)
Ny,
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The progression rates from asymptomatic humans to recovered, ignorant infected, and resistant
strains infected are v1£1, v1&2 and 1 &3 respectively. Here, 1 is the recovery rate of asymptomatic
humans, while &1, & and &3 denote the proportions of asymptomatic humans who recover, are
ignorant infected, and carry resistant strains, respectively. Parameters £1,& and &3 are such
that &1 + & + & = 1. One can take & =1 — & — k, where &3 = kand 0 < k < 1 —¢&; for
& €[0,1].

Figure 1: Flow diagram of the proposed model

The progression rates from symptomatic humans to recovered, ignorant infected, and resis-
tant strains infected are yoa1,v20i0 and a3, respectively. Here, o is the recovery rate of
symptomatic humans, while a1, a2 and ag denote the proportions of symptomatic humans who
recover, are ignorant infected, and carry resistant strains, respectively. Parameters a1, as and
asg are such that a3 +as+a3 = 1. One can take o = 1—a1 —p, whereag = pand 0 < p < 1—ay
for aq € [0, 1].

The progression rate from ignorant infected humans is 12(1 — p3), where 19 is the relapse
rate and 1 — ps is the proportion of ignorant infected humans who relapse. Consequently, po
represents the proportion of ignorant infected humans who recover.

In this paper, we made the following assumptions:

e Only individuals in the M} compartment can relapse, and the relapse occurs exclusively
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in the symptomatic compartment, Ij,.

Individuals in the T} compartment can die due to parasite resistance in the blood at rate
09, or recover if the immune system enhances at rate ;.

Recovered individuals lose their acquired immunity at rate 7.
e Humans can die naturally at rate u, which is independent of the recruitment rate Ap.
e Mosquitoes can die naturally at rate p,,, independent of their recruitment rate A,,.

All parameters of the proposed model are summarized in Table

Table 1: Descriptions of parameters of the Model —

Parameters || Descriptions
Ay recruitment rate of humans
Chm probability that a bite by a susceptible mosquito on a symptomatic,
asymptomatic or resistant strains humans leads to infection of the mosquito
Cmh probability that a bite by an infectious mosquito on a susceptible
human leads to infection of the human
o latent rate of humans
r proportion of asymptomatic humans
1—7r proportion of symptomatic humans
m natural death rate of humans
o1 malaria-induced death rate of symptomatic humans
02 malaria-induced death rate of resistant strains humans
Y1 recovery rate of asymptomatic humans
Y2 recovery rate of symptomatic humans
&1 proportion of asymptomatic humans who recover
& proportion of ignorant infected among asymptomatic humans
& proportion of resistant strains infected among asymptomatic humans
fe%1 proportion of symptomatic humans who recover
a2 proportion of ignorant infected among symptomatic humans
as proportion of resistant strains infected among symptomatic humans
n rate of loss of acquired immunity
(0 recovery rate of resistant strains individuals
g relapse rate
p2 proportion of ignorant infected who recover
(1= p2) proportion of ignorant infected who relapse
Am recruitment rate of mosquitoes
o, natural death rate of mosquitoes
n the average number of mosquito bites
Om latent rate of mosquitoes

Susceptible humans, S(t) increase at the constant recruitment rate Ap and the rate of loss
of acquired immunity from recovered humans 7, and decrease at the rates \;, and p. So, the
evolution in time of the susceptible humans can be modeled by the following differential equation:
dSp(t
dt<) = Ap — (An + 1) Sp + puRy,.
Exposed humans, E(t), increase through the incidence A, Sy and decrease at the latent rate,
o and the natural death rate p of humans. Therefore, the evolution over time of the exposed
humans follows this differential equation:
dEy(t
d() = )\hSh — (O’ + M)Eh.
t
Asymptomatic humans, A(t), increase through the progression rate ro and decrease at the
recovered rate, 71, of asymptomatic humans and natural death rate p of humans. Therefore,
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the evolution over time of the asymptomatic humans is governed by this differential equation:

dAn(t)
dt

=roER — (1 + p)Ap.

In the same manner, we can establish the evolution equations for the other human compart-
ments in the proposed model. The same principle is applied to the mosquito compartments.
These lead to the following system of ODEs, System (5))-(14).

ds
CTth = Ap— (An+ p)Sh+nRy (5)
dE
7; = MSh— (0 +p)Ey (6)
dA
= roE = (A (7)
dl,
= (L=r)oBy +4a(l = p2) My — (v2 + 01+ )i (8)
dR
7; = & An +yecrly + 1Ty + Yapa My, — (n + )Ry, 9)
dM
Wh = 7&AL +eanly — (Y2 + p) My, (10)
dTy,
o &AL + y203ly — (Y1 + p+ 62) Ty, (11)
dSm,
Em
T = mSn (ot ) (13)
dl,
T mEm - mIm 14
i o Iz (14)

System — is appended with the following non-negative initial conditions below:

(Sh(0), E,(0), A(0), In(0), Ry (0), Mp(0), Th(0), Sm(0), En(0), 1,,(0))
= (Shos Eros Ano, Ino, Bros Mro, Thos Smos Emo, Imo) > 0. (15)

3 Mathematical analysis

In this section, we conduct a qualitative analysis of the proposed model. We begin by examining
the well-posedness of the model, searching for the disease free-equilibrium (DFE) point, and
calculating the basic reproduction number. Subsequently, we establish the global asymptotic
stability (GAS) of the DFE. In addition, we prove the local asymptotic stability (LAS) of the
endemic equilibrium (EE) point of the model.

3.1 Well-posedness of the model

Let X(t) = (Sh, En, An, In, Rhs My, Th, Sy, Em, Iy) a vector solution of system (5)-(14) and
f:Qc ]R}ro — R}ro, where the feasible set €1 is defined by:

A A
Q= {(Sh,Eh,Ah,Ih,Rh,Mh,Th,Sm,Em,Im) € R}‘,-O : 0 S Nh<t) S 7h and 0 S Nm(t) = m} )
H Hom,

is a compact set of R1® and f(X(t)) = (f1, f2, f3, f4, f5, f6, f7, fs; fo, f10), where:
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(([1(X(#) = Ap— (An+p)Sh+ Ry
f2(X(#) = MSh—(0+p)Ey
f3(X(t) = roEp—(n+wpAs
Ja(X() = (1—=r)oE,+ (1 = p2)Mp — (2 + 01 + p)Ij,
(X)) = m&An+y20udy + 01Ty + YapaMy — (n+ p) Ry, (16)
fe(X(1) = m&An+y20aly — (Y2 + p) My
[r(X(t) = m&BAn+ 203l — (Y1 + p+ 02)T),
(X)) = Am— (A + pim)Sm
fo(X(1) = AnSm— (om + pim) Em
\ flO(X(t)) = omBm — tmln

Theorem 1 (Well-posedness of the model). Given the non negative initial conditions in ,
the system @— is a dynamical system on the biological feasible region 2. Furthermore, the
mvariant compact set € is attracting in R}FO with the given initial conditions.

Proof. The proof consists of two steps: First, we show that, for non-negative initial conditions,
system — admits a unique non-negative solution for all ¢ > 0, which lies within the feasible
set £2. We also demonstrate that € is a positively invariant set for the system. Second, we prove
that any solution of system — remains within €.

For the first step, functions f; in are C*°—functions, which implies C'—functions. Hence,
function f is differentiable. Consequently, from the standard theorem of the dynamical system
(Andrew & Rl 1998; |Wiggins & Golubitskyl, [1990), f is locally Lipschitz continuous in some open
ball containing X (0). Therefore, it follows by Cauchy-Lipschitz theorem that the system -
has a unique solution, which exists locally. In addition, suppose that X (¢) is a solution of system
(B)-(14) for X (0) > 0, and let ¢y be the smallest positive ¢ such that Sy (tg) = 0 or Ep(tg) = 0 or
Ah(to) =0or Ih(to) =0or Rh(to) =0or Mh(to) =0or Th(t()) =0or Sm(to) =0or Em<t0) =0
or I,(tg) = 0. By continuity of functions Sy, En, Ap, I, Ry, My, Th, Spm, Em and I, there exists
t* > to such that if Sy (t9) = 0, then from equation , we have ds’zligto) = Ap+nRp(to) > 0. Thus
for all ¢t € [to,t*], Sp(t) > 0. Consequently, S, is non negative for all ¢. In the same manner, we
can establish the non negativity of Ey, Ap, I, Ry, My, Th, Sm, Em and I, for all ¢ > 0. Hence,
the solution X (t) of the model are non negatives for all ¢ > 0. Therefore, the feasible set € is
positively invariant, consequently for all £ > 0 the solution remains positive.

By adding equations —, we obtain:
dNp(t)
dt

Ap — uNp — 611, — 62T},
< Ap—pNy (17)

Applying Gronwall inequality to the relation , we obtain:

Ast — +oo,
Ap Ay,
0 < Np(t) < — for 0 < Npg < —, (18)
Iz 1
Likewise, adding equations -, we get:
AN, (t
;;( ) = Am — N

Solving this first order differential equation, we obtain:

A A
Np(t) = M—m + exp(—pimt) <Nm0 — m) )

m m
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As t — 400,

A
0< Np(t) = 2. (19)
K,
This means that, for all ¢ > 0, all solution of system — satisfies relations and .
Furthermore, when a solution of system 1) starts outside of the feasible set €2, with Npo >
Ap .

“&or Npo > 2—;’:, it follows from relations (18) and that limsup,_ ., Nip(t) < % and

lim sup,_, o, N (t) < A= Thus, the region Q is attracting. Combining the above two steps and
using theorem 2.1.5 in’ (Andrew & R [1998), we conclude that the system (5)-(14) defines a
dynamical system on 2. Additionally, let us verify the dissipation condition to conclude about
the global existence and the boundedness of the solution (Caraballo & Han, 2016).

F(X).X

(f17f27f37f47f57f6af77f87f97f10>'(Sh7EhaAh7Ih7Rh7MhaTh7Sm>E’m7Im)
[An — (An 4+ 1)Sh +nRR)Sh + [MSh — (0 + p)EREp, + [roEn — (71 + 1) Ar)An

+ [(L=7)oEy +¥2(l — p2) My, — (2 + 01 + p)In] Iy

+ & An + oo dy + Ui Ty + Yopa My, — (n+ ) Ry Ry,

+  [néedn + v2aaly — (Y2 + ) Mp]Mp + [11E&3An + y203ln — (Y1 + p+ 02)Th]Th
+ A — A+ ) Sm)Sm 4+ [AnSm — (om + i) Em) Evy + [0mEm — tomIm]Im
< (T4 3um +0+71 + 72+ 61+ 0+ o + 1 + 62 + o) || X

+ (Ap+n+ 0+ Py + 92 + V1) NP + (2emnnNE + Ay, + 2¢hmn + o) N2,

= a||X[]*+0,

where a = 7pp + 3 + 0 +v1 + 72 + 01 + 1+ Y2 + 1 + 62 + 04y, and

b=(Ap+n+o+ey1+y+ wl)Ng + (20mhnN£ + A+ 2¢pmn + 0, ) N2,. Hence, there exists a
unique solution X (¢) of system (5)-(14) globally defined in time and since S (t) < Ny(t), Ex(t) <
Np(t), Ap(t) < Np(t),In(t) < Np(t),Rp(t) < Np(t),Mp(t) < Np(t),Th(t) < Np(t), Sm(t) <

N (t), B (t) < N (), I (t) < Ny (t), for all ¢ > 0, the solution X (¢) is bounded. O
3.2 Disease-free equilibrium and basic reproduction number

3.2.1 Disease-free equilibrium (DFE)

Theorem 2 (Equilibrium of the model). The system (@- admits at least one equilibrium
point in the positively invariant compact set €.

Proof. To determine the equilibrium of the model system —7 we set the right-hand side of
system — equals to zero. We have then:

0 = Ap—(An+w)Sy+nRy (20)
0 = MSh—(0+pEy, (21)
0 = roEp—(n+p)An (22)
0 = (1—=r)oEL+ (1l —pa)Myp — (2 + 61 + )y (23)
0 = m&An+y2arly + 1T + Yape My — (0 + p) Ry, (24)
0 = M&AL+y00ly — (Y2 + )M, (25)
0 = M&AL+ 2031y — (Y1 + p+62)T) (26)
0 = Apm— (A + tim)Sm (27)
0 = AwSm — (0 + i) Em (28)
0 = omBm— il (29)
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From Equations , , , , , , , , and we obtain respec-

tively:

A
S = ———, 30
pW——— (30)
A\,
E,, = , 31
(om + i) (A + ) (31
O'mAmAm
I, = , 32
" Mm(am + ,Ufm)()\m + Nm) < )
&AL + 20313
Ty = , 33
" Y1+ p+ 02 (33)
&2 An + Yeanly
M, = , 34
" Yo+ p (34)
R, = Y& AR + vear Iy + Papa My, + ¢1Th7 (35)
n+u
B, = (v2 + 01 + p) I — P2(1 — P2)Mh’ (36)
(1-r)o
A E
Eh:7(71+u) o Ap = el , (37)
ro Mt
ARSh
E) = , 38
= it (39)
Ap +nRy
Sy, = ——. 39
e (39)
Equating Relations and , we obtain:
Iy, —(1— A
ro (1 — p2)ihe
Equating again Relations and , we obtain:
1-— 1-—
1y = 7oL pa)emée & (L= r)o + (v + 1) )

~ro(Yo + p)(y2 + 01+ p) — ro(l — pa)hayeas

We notice that from Equation , if Ay, = 0, then Ij, = 0, substitute them into Equation
, we obtain Ty, = 0. Therefore, after some substitutions, we obtain: Ej, = M), = R, =
0,5 = % and S, = ﬁ—m In a vector notation, we can write:

m

A A
X0 = (h,o,o,o,o,o,o, m,0,0> : (42)
H m

This equilibrium occurs in the absence of malaria in the population, called ”disease-free
equilibrium (DFE)”. In the absence of malaria, the human and mosquito susceptible populations

are proportional to the ratios % and ﬁ—: respectively. ]
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3.2.2 Basic reproduction number

The basic reproduction number, Ry, (Driessche & Watmough, 2008) defined as the average
number of secondary cases produced by one infectious individual during her/his entire period
of infectiousness in a completely susceptible population. It is a very important threshold for
the stability analysis of a given model. To compute Ry, we use the next generation matrix
as developed and explained in (Diekmann & Heesterbeek, 2000; [Driessche & Watmough, 2002,
2008). The disease compartments of the model system — are Ey, Ap, Iy, My, Ty, E,, and
I,. The system — can be reduced as Y = F — V), where matrices F and V represent the
rate of appearance of new infections and the transfer rate of individuals between the infective
classes, respectively. We have then:

AnSh
0

0
Fy)=| o
0

AmSm
0

and V(Y) =

(0 + W En

(Um + Nm)Em

—OmEm + pndm

—roEp + (m + p)An

—(1 = r)oEp — (1 — p2) My + (2 + p + 1) 11
—71§2An — o0l + (Y2 + p) My,
—11&3An — y2a3ly + (Y1 + p 4 62)T,

Setting that @y = o + p,we = 71 + p, @3 = Yol — p2),@ws = Y2 + p + 61,5 = P2 + p, w6 =
Y1 + 1+ 9o and w7 = oy + m, the Jacobians of these matrices evaluated at the disease-free

equilibrium, X° give respectively:

0 0 0 0 0 0 cmpn
0 0 0 0 0 0 0
0 0 0 0 0 0 0
F— 0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 ChmnIUAm ChmM N 0 Chmn/’LAm 0 0
P Ap P p pmAp,
0 0 0 0 0 0 0
and
w1 0 0 0 0 0 0
—ro w9 0 0 0 0 0
—(1—=r)o 0 wy —w3 0 0 0
V= 0 -né —ypar w5 0 0 0
0 —71{3 —7Y203 0 W6 0 0
0 0 0 0 0 Vi 0
0 0 0 0 0 —0om Um
And we have:
1
= (1) 0 0
ro
e = 0 0
(1-r)o k1w néews a1 (1 i %) @3
w1 T4 k2w1WQW4 kgwg w4 kg kz
vl = k1 718204 Q272 w4
kgwrw'g kQWQ kQ k2
k7 Y1(azyeéews+E3ke)  azy2(aeyewstka) Qa3y2ws3
kowotwog kowawoe kowe
0 0 0 0
0 0 0 0
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and
0 0 0 0 0 0 0
0 0 0 0 0 00
0 0 0 0 0 0 0
Fy-l— 0 0 0 0 0 0 0
0 0 0 0 0 0 0
Amchm,unk Amchm:un ks Amchm,un 5 A Chm U003 (1 + agyg) A Chm im0 0 0
Anfim Ap o Ap @4 kaAppm w6 Appmos
0 0 0 0 0 0 0
with k1 = o(yae(l — r)wy + Niréews), ko = waws — aeyaws, ks = (;Z;)Z k2£1;§w4, 4 =
e (12 )z (108 ) ks = 1 e (1o )1 = (14 7 ) (14 =)
_ : k &:
and ky = 22— <(1 —r)o+ k;gg) + P
The basic reproduction number, R is defined by:
Ro = p(FV1), (43)

where p(.) is the spectral radius of the next generation matrix FV 1. After some computations,
we obtain:

Ro = p(FV)
\/ CmhChm T T m
= n

R R 44
,LL,QTLW1WQYDGW7I€QA}L( 01+ 02)’ ( )

where Ro1 = 1 [ka(we + 71£3) + N&ews (203 + ws)] and Roz = (1 — r)waws(we + Y2003).

Remark. The basic reproduction number, R, representing the average number of secondary
malaria cases produced by a single infectious individual during his/her infectious period, can be
decomposed into two terms: Rg1, the contribution from asymptomatic humans, and Rgo, the
contribution from symptomatic humans. Furthermore, all these contributions are weighted by
the mosquito biting term, n, which represents the average number of mosquito bites per human.
When the basic reproduction number Ry is less than one, malaria dies out. When it is greater
than one, malaria continues to spread in the population. The fractions //\\—’Z and 1/pu,, represent
the relative population dynamics of mosquitoes versus humans in the model and the survival
period of mosquitoes respectively. The ratio p/p,, represents the relative measure of mortality
between human and mosquito populations. When it is high, it indicates that human mortality
is much greater than mosquito mortality and vice versa. This ratio is very important, as it
helps in understanding population dynamics and the impact of interventions, such as mosquito
control.

3.3 Global Asymptotic Stability of the DFE

Theorem 3 (GAS of the DFE). The disease free-equilibrium X° of model @— s globally
asymptotically stable (GAS) in the positively invariant and compact set ) whenever Ry < 1. If
Ro > 1, the disease-free equilibrium is unstable, the system is uniformly persistent, and there
exists at least one equilibrium in int($2).

Proof. To prove the GAS, we need to construct a Lyapunov function L, depending on Ry,
to determine whether its derivative is less than one. For this construction, we use the matrix-
theoretical method explained in (Shuai & Driessche, 2013)). Let z = (Ej, Ap, In, My, Ty, Ep, In)T
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and y = (Sp, Ry, Sm)T. Using matrices F,V, F and V, the computations of f(z,y) = (F—V)x —
Flx,y) + V(z,y) give:

f(xay) = (F—V)x—f(a:,y)—i—l)(:v,y)

Sh
_En S
() )
5 h
0 0
_ 0 > X
0 - 0
0
Chmn,LLAm (Ah + Iy + Th) ,UmAh
N, — ———8S,, 0
NmAh Nh ,U/Am 0
0
and
0 0 0 0 0 0 CmhT?
cmfﬁra
0 0 0 0 0 0
w12
0 0 0 0 0 0 ;’”ZL <(1— )o + kﬁ‘”’)
1w4 2W2
1CmhT
-1 _ 10 0 0 0 0 0
VoE = kotoyto9
0 0 0 0 0 0 S ks + 71”’53)
we w2
0 A Crmpn A Chmpn 0 A Chmpn 0 0
Appim 7 Appim 7 Appim 7
o Amchmpnom A Crhmpinom, A Chm pinom, 0
App2, w7 App2, w7 App2, w7
m m m

Since %L <1, then f(z,y) > 0. Again, we observe that ' > 0,V ! > 0 and f (x, (%,0, ﬁ—z)T) =

0 in the invariant feasible set . Therefore, since the matrix V~'F is reducible, we use theo-
rem 2.1 of (Shuai & Driessche, 2013) to construct the Lyapunov function of the model system
—. For this construction, let suppose that w’ = (w1, wa, w3, wa, ws, wg, w7) > 0 be the left
eigenvector of the non-negative matrix V' F corresponding to the eigenvalue Rg. Then:

(w1, wa, w3, Wy, Wy, we, wr)V IF = Ro (w1, wa, w3, wa, Ws, We, Wr) (45)

The left hand side of Equality gives:

Tor1 AmChmpn AmChmpnoy, — ApcChpmpn A Chmpinom,
w V F = 07 6 2 77 6 270}7? 07
Hm@7 A M @7 A Hm@7 AR M @7 AR

A A
mChm T mghmﬂnamw7707 thnwl + thanWQ T Aws

pm @7 Ay, w7 Ay w1 w1

kicmpn

+ T+ Bw5> , (46)
koto1to9

k
where A = S <(1 —7r)o+ 1w3> and B = Sk (Oég’YQ]ﬁg + ’YITJ§3> .
w1y kowoo w6 w1 W
Equating relations and , we obtain: w; = wg = wg = 0, and wy = w3 = wy =
A
Mw% with wy > 0. Consequently,
i @@7 AR Ro
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oI = <0 A chmpnoy, . A Chmpnoy, . A Chmpno,
" 2w Ay Ro T p2wr Ay Ro T pd,wr AR Ro
& Driesschel 2013), the function L defined by:

w7,0,w7>. By theorem 2.1 of (Shuai

L = vz
A Chmpno, ro (1-r)o kitos
= =7 + +
w2 w7 AR Ro koD 0104 koto1 oo

+ k7) Ey

) kowg (! ko kotog

W a 1 TmW w
+ = <1+ 372) Mh+Th} wi + 2B+ <1,
ko wg w6 M @07 Hm

is a candidate Lyapunov function for system (5)-(14)). The differentiation of L with respect to
time ¢ gives:

I = (Ro — Dwlz — TV f(z,y)

A Chmpnom,
= —1) | ——(A I T, I,
(Ro )|:M72nw7AhR0( nAIn+Th) + }fw

A 2 I 1-— k
—  CmomImhE O [m T Gl LA +mk7} <1 - Sh) Y
waﬂﬂlAhRO w9 Tog kQWgW4 Nh

S .
Since — < 1,if Ry < 1, then L < 0, which implies that function L is a Lyapunov function for the

system —. Furthermore, L = 0 implies that Ay, = I, = Ty, = I,,, = 0. Therefore, the largest
invariant set of the model when L = 0 in int(Q) is the singleton {X°}. Thus, by the LaSalle’s
invariance principle (LaSalle, |1976), the disease-free equilibrium X0 is globally asymptotically
stable provided that Rg < 1. In addition, if Ry > 1, then L > 0 for J% = 1. Therefore,
by continuity, L remains positive in a small neighborhood of the disease-free equilibrium X,
implies that X is unstable when R > 1. Using theorem 2.1 of (Shuai & Driessche, 2013), the

system — is uniformly persistent implies that there exists at least one endemic equilibrium
of model system -, noted by X*. O

3.4 Endemic Equilibrium (EE)

Let X* = (S}, B}, Ay 15 Ry, My, Ty, Sy, B, 1)) be the endemic equilibrium (EE) of the model
system ([5)-(14). Then, one can obtain the endemic equilibrium by setting that the right hand
side of system — is equal to zero. That is:

0 = An— (N, +w)S; +nRj

0 = XSi— (0 +E

0 = roEy—(n+pA;

0 = (L=r)oE, +v2(l = p2) My — (2 + 61 + ),

0 = m&A; +y0aly +UiTy +bapa My — (n+ p)Ryy (48)

0 = 7&A; + ool — (Yo + pu) My 7

0 = M&A; + veasl; — (V1 +p+ 62)T)

0 = Ap— (A5 + )5S,

0 = )‘;';15;1 - (Um + Mm)E:n

L0 = onE} — uml}

where AY = cpmn (4], + ]—\T[Z+ i) and \; = cmhn]{;f‘k. After some algebraic computations of the
system , we obtain th}é endemic equilibrium Xg = (S5, E5 Ay IE Ry My Ty Sy B T,
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Ap +nRjy
AL+

)

where components are given respectively by the following implicit formula : S} =

AhSh AF = roEy . ro(l— p2)eyiée + (1 —r)o(yr + p) (2 + p)

B = - I =
Mo+ TU(¢2+M)(72+51+M)—7’0(1—02)10272(12
jo &1 A}, + vean Iy + hopa My + 1 T M = ~ m&A; + yeasl] T — n&3A; + a3l
he n+p . h o + p ’*h Y1+ p+ o2
Sn=Dm g AmAm and I, = mAmdin .
Ay + Hm (m + pm) (N, + i) o (T + pm) (N, + im)

Theorem 4. [GAS of the EE] If Ro > 1, the endemic equilibrium X* is GAS in Q.

Proof. We use Lyapunov function theory to prove the GAS. To construct the Lyapunov func-
tion, we use graph-theoretical method explained in (Shuai & Driesschel 2013)). Let:

Ly =Sy — S5 —S:n(S,/S5), Ly = Ey, — Ef — Ef n(Ep/Ef), Ly = A, — A% — A% In(A, /A7)
L4 = Ih - I;: — I;: ln(Ih/IZ),L5 = Rh - R;’; — R;kl ln(Rh/RZ),Lﬁ = Mh - M;: — M;: ln(Mh/M;;)
Ly =Ty —Tf — Ty (T}, /T;), Ly = Spn — 5%, — 8% 10(S/S5), Ly = By — Ef, — Ef, In(Eyn /EX,)
Ly = I — I¥, — I* In(I,, /1)

Solving each equation of system leads to the following quantities:
Iy, cmpn Sy .

) =By SRR o4

Yo+ 01+ p= ((1 =)o By + (L= p2) My) [T, n+ = (&1 A}, + e Ly + i Ty + hapa M) [ Ry,
Yo + = (M&A) + v2cal)) /My, b1 + 62 + p = (&AL + veasly) /Ty

ChmM . chmn(Ay + 17 +T7)S)
Am: h”i (Ah+Ih+Th)+Mm vaam+um: o ( b * L h) =
N NyEY,

Ay = [ cupn=2

and piy, = o BN/ 1F,.

Using inequalities 1 — x +Inz < 0 and 2 — z — % < 0 for z > 0 in the differentiation of
L;,ie€{1,2,3,4,5,6,7,8,9,10} with respect to t give:

. Sy Sy I
b= (1=22) 8 = (1-22) (A~ (cpmni
1 ( 5h> Sp = < Sh> < h <C hnNh-i-,u) Sh+77Rh>
I S* I Sy R, S; S Ry,
< I (22 _Zh g pZh She oy Ph g 2h gy R
> CpaNidy, <I;;1 Sh n T n— > + Rh (R* + Sh Sh R*)
= a1,10G1,10 + a15G15

. E* E* I,
fn = (1-22)E,=(1-20) (cppn® s, — E
2 ( Eh) h = ( Eh> (C hnNhSh (0 + ) h)

I, En, I.hE; Lo By B | In
= eIt (- 2R 1
oty (£ =5~ 1) <ot n

[ _ A* _ A* Ey Ay, Ath
Ly = <1 Ah> Ay = <1 Ah) (roEp — (M1 + p)Ap) =roEj <E2 A ALE; + 1)

Ey Ay, A* E, .
ro by, (E* - f —1In Ih_lnﬁ = a32G32

IN
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iy =
<
is —
<
+
e =
<
iy =
<
s =
o =
Lo

(1=38) = (1= 1) (=)ot a1 = o) = (0 + 1+ 1)

E, I, . I . E, «
1-7r)oE; [ — -2 —-In-h —In—2 1 — po) M}
(L=r)o h(E;; ', E + ol = p2) My, My, M;

a42G 42 + a46Gag

R\ . Ry
< B RZ) Ry = (1 - Rh> (&1 An +v200dh + 1T + P2pa My — (n + p) Rp)

« [A R R A +(In R Ry I
71§1Ah<h —h_ h—lnh)—i—'ygoqlh(h—h— h—lnh>

A R 'R, A Ir R R, I
T, R, . R T, M, R, . R . M,
Tr(2h _Zh gy T gtk M B W
it (T,i; e e e e e A U VR e T V7
a53G53 + a54Gsa + a57Gs7 + as6Gise
1= MY wg = (1= MEN (16 4p + a0 — (s + 1) Mp)
M, h = M, Y162A4R T V2021p 2 T [)Mp
Ah Mh Mh A Ih Mh Mh Ih
P o (L A W N
Y1&24y, <A2 iF VA A* + Yol I M A I*

ag3Ge3 + agaGoa

T Ty
<1 _ T) T, = <1 — T) (7€ AR + y2a3lp — (1 + o+ 62)Th)
h h

* Ah Th T* A Ih Th *

a73G73 + a74G74

Sy Sk Ap+ I + Ty
(8 (o tzhim )

3chmn5;;<1—5m Sm +1>+um5;<1—5m Sm +1><0

Sx S, Sx S
E‘,:;1 o E‘,:;1 Ah =+ Ih =+ Th
<1 — Em) E, = <1 — Em) (chmn N, Sm — (om + pm)Em>
S E E' Sm S, E,, E? Sm.
x (Om _ Em < + [ Om _
3chmnSy, <S;§1 B BnSt + 1> < 3cpmnS,, <S* B In E, —In Sf%)
aggGlgg

Iy, I E, I, I‘E,
= (1_I>I —(1—ﬁ>(amEm—umIm)—amE;fn< L +1>

m Ex It I.E%

m

FE, I, I E,
< amE,’f,L< T _In™ —n >:a10,9G10,9

Ex I I, E*

From these derivatives, the weighted associated digraph (G, A) is shown on Figure .

The weighted matrix A of the digraph is A = [a;;]10x10, Where a1 10 = ag,10 = cpmanl},, a15 =

nR;km as2

= roE}, a1 = Va(l — po) M} as0 = (1 — r)oEf,as3 = 71&14f, asa = yooul},as57 =

Ty, ase = apa My, arz = 11&345, ars = y20317, ae3 = 11&24;, ass = 12021}, a109 = 0 By, ag8 =
3chmnSy, and all other a;; = 0. The value a;; represents the weight of arc (j,7). From all these
calculations, the first condition of Theorem 3.5 of (Shuai & Driessche, 2013)) is satisfied. Let
check now the second condition of the cited theorem. In the only one directed cycle, we have
G4 + G4 = 0. Then, the second condition of Theorem 3.5 of (Shuai & Driessche, 2013)) is also
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Figure 2: The weighted digraph (G, A) constructed from derivatives L;.

satisfied. Therefore, by the cited theorem, there exists ¢;,i € {1,2,3,4,5,6,7,8,9,10} such that

10
ﬁ = Z CiLi, (49)
i=1

is a Lyapunov function for the model system —. The relations between c¢; can be derived
from Theorems (3.3) and (3.4) of (Shuai & Driesschel 2013)) as follow: cia15 = ¢5(ass + asa +
ase + as7); csasy = cr(ars + az4); c10a10,9 = Colgg; Cl0G10,9 = C1G1,10 + C202,10; C202,10 = €3G32 +
cqa42;c3a32 = crars + cgags. Therefore, ¢ = c5(ass + asq + asg + asy)/ais;¢5 = cr(ars +
ara)/as7;ca = (€3a32 + caaa2)/az,10;clo = (c1a1,10 + €2a2,10)/a10,9; 9 = C10a10,9/a9s and c3 =
(céags + crars)/asa. The fact that L= Z}ﬂl ¢iL; <0, implies that X = X*. Consequently, the
largest invariant set for system — where L = 0 is the singleton set {X*}. This proves the
uniqueness and global asymptotic stability of { X*} in the interior of Q provided that Ry > 1. [

4 Numerical analysis

In this section, we present a quantitative analysis. After introducing the parameters, we conduct
the local sensitivity analysis and conclude with numerical simulations to support our qualitative
findings.

4.1 Parameters presentation

We present here the baseline values of parameters which will be used for numerical simulations.
Most of them, have been taken from the literature (Fatmawati et al., 2018} Mangongo et al.,[2022;
Ndoen et al., 2012 |Olaniyi et al., 2020) and others are computed and reasonable assumed. The
Table[2| gives description, baseline value, range for each parameter and their related sources. The

. . 71
parameters o, 01,02, 71,72, 81,82, &3, a1, a2, a3, M, Y1, 2, p2 and oy, have for dimension day™.
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The parameters cp,, and ¢, are dimensionless. The parameters p and p,, have for dimensions

humans~1
for dimensions humans X day™

x day~!

1

and mosquitoes™' x day~

1

and mosquitoes X day

-1

respectively. The parameters A, and A, have
respectively.

Table 2: Baseline values for parameters of the model —

Param Descriptions Values Range Ref.
of values

An recruitment rate of humans 11,883.26 computed

Chm, probability that a bite by a 0.64 [0,0.8] (IAgusto & Tchuenchel? |2013D
susceptible mosquito on a
symptomatic, asymptomatic
or resistant strains humans
leads to infection of
the mosquito

Cmh probability that a bite by an 0.64 [0,0.8] quusto & Tchuenchel? |2013D
infectious mosquito on a
susceptible human leads
to infection of the human

o latent rate of humans 0.054 - (Ndoen et all [2012)

r proportion of asymptomatic 0.67 - dAndolina et al. |2021D
humans

7 natural death rate of humans 0.00421 [0,0.05] quusto & Tchuenche, |2013D

o1 malaria-induced death rate of 0.0001285 - (Mangongo et al., 2022)
symptomatic humans

62 malaria-induced death rate of 0.0001285 - QMangongo et al.|, |2022D
resistant strains humans

Y1 recovery rate of asymptomatic 0.071 [1/1500, 1] QKamaldeen et al.|7 |2019D
humans

Yo recovery rate of symptomatic 0.71 [1/1500, 1] QKamaldeen et al.L |2019D
humans

& proportion of asymptomatic 0.2 - (Mangongo et al., [2022)
humans who recover

& proportion of resistant 0.6 - assumed
strains infected among
asymptomatic humans

aq proportion of symptomatic 0.2 - QMangongo et al.L |2022D
humans who recover

as proportion of resistant strains 0.6 - assumed
infected among symptomatic
humans

n rate of loss of acquired immunity 0.02 - Mangongo et al.| [2022

Y1 recovery rate of resistant strains 0.0471 [1/1500, 1] (]Kamaldeen et al.L 2019))
individuals

2 relapse rate 0.5 - assumed

P2 proportion of ignorant infected 0.2 - QMangongo et al.L |2022D
who recover

Am recruitment rate of mosquitoes 1,000 - (Cai et al. |2017)

Lm, natural death rate of mosquitoes 0.1435 [0.02,0.2] Anguelov et al.ﬁ 2012E

Strugarek et al.| [2018
(Zhang et al., [2020))
n the average number of mosquito bites 25 [0.1,50] (Tchoumi et al.; [2023)
om latent rate of mosquitoes 0.0769 (]Mangongo et al. |2022D
To compute Ap, we use the following formula A, = %, where 7 is the birth rate

per 1,000 per year. Taking the birth rate per 1000 per year of the Democratic Republic of
Congo (DRC) for 2023, which is estimated to 7 = 41 per 1,000 habitants and
the population of DRC was about 105.79 million in 2023. Using these informations, we found
A = 11,883.26. The latent period of malaria is ranged between 7 and 30 days
. Taking inverse of the mean of this range we obtain the latent rate equals to o =
0.054. Because the asymptomatic malaria cases represent a high proportion of all Plasmodium
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infections, we take r = 2/3 as the proportion of asymptomatic humans. We take equal the
proportions a; = & = 0.2 of asymptomatic and symptomatic humans who recover (Mangongo
et al., 2022). The numerical simulations will be done using the following initial conditions
Sho = 50000, Epg = 1000, Apg = 1000, Ig = 1000, Rpo = 5000, My = 1000, Tho = 1000, Sino =
500, Epo = 250, 1o = 250. That is Npg = 60000 and N,,,o = 1000.

4.2 Local sensitivity analysis

In this subsection, we provide the local sensitivity analysis of the basic reproduction number Ry.
In analysis of the spread of a disease, the role of threshold Rg should be highlighted, in sense
that, it determines the extinction of a disease if it is less than unity (Ro < 1). The sensitivity
analysis gives an idea of the most important parameters to reduce very significantly R in order
to control malaria. Therefore, it’s very important to analyze its sensitivity according to each
control parameter composed it. For this purpose, we compute %R&O for each parameter. This
leads to the sensitivity indices, displayed in Table |3] which measure the ratio of the relative

change in Ry to the relative change in parameter o (Zhou & Liu, 2008).

Table 3: Sensitivity indices

param formula: %%{) values  sens. index
n 1 25 1
Arm, 3 1,000 1
d )
e [+ _ 2oy 0.71  -0.0453
” 2(Ro1 + Roz2) 2k2 ' '
IR IR
W o+ _ (@i mamp(=p)) gy ~0.0452
2(Ro1 + Ror) ] 2ks ' ’
9Ro1 9Ro2
N2 |5y T oy Y1
- 0.071 -0.00244
m 2too (Rol -;QROQ) 2109
01
r —_ 0.67 0.000282
2(Ro1 glzzm)
TY1§3R2
— 0.6 0.000116
& £2(73(21 + Roz2) )
V1§23 (Y23 + ws
0.2 0.0000365
) (o (1))
Y2oz(ry1§ews + (1 — r)waws
Qi 0.6 0.00000935
3 2(Ro1 + Roz2)
s 202 (r(w6 + N8s) — Ror — Roz) 0.2 —0.00000837

2k2(Ro1 + Ro2)

Ro1

0
The derivatives of Ry and Rz with respect to v, are given by = rko&s+ &ows(vaas +we)

ORo2
om

to 79 are given by

and = (1 — r)ws(we + y2a3) respectively. The derivatives of Rg; and Rp2 with respect

OR
= T’)/1§QW3043 + r(wG + 7153)(@'5 — agw;g) and 8722 = (1 — T)WQW5043

respectively. The derivatives of Rg; and Rg2 with respect to 19 are given by

ORp2
0o

Finally, the derivative of ko with respect to o is given by 8—2 = W5 — Qo wW3.
Y2
We consider ten controllable parameters. Arranging in the descending order of the absolute

value of their sensitivity indices, the average number of mosquito bites n takes the top of list
with sensitivity index 1 as shown on Figure This means, reducing mosquito bites ensure
significantly the reduction of threshold Ry. The recruitment rate of mosquitoes A,, comes
in the second position with sensitivity index +0.5. So, we have to reduce the recruitment of

Ro1

Ro1
0o

= (1—r)wa(we+7y2003) respectively.

= r[(we +

7183) (@1 —aay2(1—p2)) +7182(1—p2) (Y203 +w6)| and
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mosquitoes in order to control malaria. This can be implemented by maintaining a health
environment by destroyed mosquito eggs in puddles. The recovery rate of symptomatic humans
72 comes in the third position with sensitivity index -0.0453. The recovery rate of asymptomatic
humans v; takes the fourth position with sensitivity index -0.00244.

0.95F .
0.9 7
0.851 7
0.8 .
0.75F .
0.71 7
0.65F .
0.6 .
0.551 7
0.51 7
0.45F .
0.4 .
0.35F 7
0.31 .
0.25F .
0.2r 7
0.15F 7
0.1 .
0.05F 7

Sensitivity index

-0.05F

c = £ Lo Lo o M 0 R o~
- L o & ia} 23 L L
Parameters

Figure 3: Sensitivity indices.

This shows the impact of asymptomatic humans in the spread of malaria. We have to increase
the recovery rate of asymptomatic humans in order to reduce the basic reproduction number
Ro, which implies to control malaria. This can be implemented by a mass screening of humans
population and their treatment until complete recovered. Parameters r, &3, &9, 1092, a3 and as do
not influence significantly the basic reproduction number because of their very low sensitivity
indices. In the next subsection, we provide some numerical simulations.

4.3 Numerical simulations

In this subsection, we provide some numerical simulations for the model system — by giving
first the endemic trends of both human and mosquito populations. We give the time evolution
of the recovered individuals Ry, for different values of the recovery rate of asymptomatic humans
~1. In addition, we provide scenarios for resistant strains humans for different configurations of
a3 and £3. Finally, we present a disease-free trend of the model.
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Figure 4: Endemic trends of humans and mosquitoes for parameter values on
Table 2. We obtain Ry = 1.03 > 1 and the estimated endemic point is

(1189340,305063,146230,11776,598736,7426,217163,390,4303,2321).

Figure [] shows the endemic trends of both human and mosquito populations for parameter
values on Table The related basic reproduction number Ry = 1.03, is in the same range
with the one obtained in the literature (Mangongo et al., 2022, 2021)). This confirms the global
endemicity situation which occurs when the basic reproduction number is greater than unity as
proved in Theorem [d] That is, malaria continues to spread in the population.

Figures [5] and [6] show the important role of asymptomatic and resistant strains infected
humans in the spread of malaria. We can state that all the previous known strategies (optimizing
vector control and treatment of symptomatic cases) against malaria should be revised by taking
into account the presence of asymptomatic humans and those with resistant strains. Parameters
1, ag and &3 are highlighted the role of asymptomatic and resistant strains infected humans in
the dynamics transmission of malaria.

Figure [5] shows the bad role of asymptomatic humans in the transmission dynamics of
malaria. The number of recovered humans increases with the recovery rate of asymptomatic
humans. We observe that with a high recovery rate of asymptomatic humans, many individuals
(asymptomatic, symptomatic and ignorant infected humans) recover. When reducing the recov-
ery rate of asymptomatic humans, a small number of individuals (asymptomatic, symptomatic
and ignorant infected humans) recover. The role of recovery rate v; of asymptomatic humans
should be capitalized in order to control malaria transmission dynamics.

Figure [6] shows many comparison of resistant strains infected humans under different con-
figurations of the proportion of resistant strains infected among symptomatic humans a3 and
the proportion of resistant strains infected among asymptomatic humans £3. Subfigure (a) sets
the value of & at 0.1 and shows six configurations of T}, for six values of ag. In subfigure (b),
the value of &3 is fixed at 0.2, and six configurations of T}, are given for six values of ag. Sub-
figure (c) sets &3 to 0.3 and presents six configurations of 7}, corresponding to six values of as.
Subfigure (d) fixes &3 at 0.4 and illustrates six configurations of T}, for different values of as.
In subfigure (e), &3 is set to 0.5, and six configurations of T}, are displayed for six values of as.
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Figure 5: Evolution of recovered individuals for different values of ;.

Finally, in subfigure (f), the value of &3 is fixed at 0.6, and six configurations of T}, are shown
for six values of a3. The population of resistant strains infected humans is more influenced by
the proportions as and £3. Reducing these proportions in the population help to reduce the
number of individuals with resistant strains in the population. People should be treated until
to be completely recovered.

Figure[7] shows the malaria free trends for both humans and mosquitoes for parameter values
on Table [2| except 1 = 0.5,n = 5 and A,, = 500. We obtain the basic reproduction number
Ro = 0.81 < 1 and the estimated disease-free point (2500000,0,0,0,0,0,0,3500,0,0). This shows
the global stability of the disease-free when the basic reproduction number is less than unity.
This confirms Theorem [3] We reach the disease-free equilibrium by reducing parameters A,
and N, and by increasing parameter ~;. This shows again the important role of asymptomatic
humans in the spread of malaria. That is, we have to increase the recovery rate of asymptomatic
humans which will reduce their number on the human populations.

5 Discussion and concluding remarks

In this paper, we analyzed a model of malaria transmission dynamics by incorporating the
asymptomatic and resistant strains individuals in the human populations. To describe the dy-
namics of mosquito populations, we used the common SEI scheme. After proving the well
posedness of the model, we compute the basic reproduction number R, which is composed of
two different terms (Rg; and Rz, contributions of asymptomatic and symptomatic humans).
All these contributions are weighted by the mosquito biting term. We proved that the disease-
free equilibrium (DFE) of the model is global asymptotically stable (GAS) whenever the basic
reproduction number is less than or equal to unity. For the case where the basic reproduc-
tion number is greater than unity, we analyzed the global asymptotic stability of the endemic
equilibrium (EE).

Sensitivity analysis, Table [3] reveals that the basic reproduction number Rg, consequently
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Figure 6: Comparison of T} (t) under different a3 and &3 configurations.

the spread of malaria, is more influenced by the average number n of mosquito bites with
sensitivity index + 1, the recruitment rate of mosquitoes A,, with sensitivity index + 1/2, the
recovery rate of symptomatic human v, with sensitivity index -0.0453, the relapse rate 9 with
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Figure 7: Disease-free trends of humans and mosquitoes for parameter values on Table [2| except
v1 = 0.5,n = 5 and A,, = 500. We obtain Rg = 0.81 < 1 and the estimated disease-free point is
(2500000,0,0,0,0,0,0,3500,0,0).

sensitivity index -0.0452 and the recovery rate of asymptomatic humans 7, with sensitivity index
- 0.00244. Others parameters do not influence very significantly the basic reproduction number
Ry, see Figure [3] Using Table [2| we found that the basic reproduction number is greater than
one (Rp = 1.03 > 1). This ensure the endemic situation of malaria as shown on Figure
Reducing the recruitment rate of mosquitoes at A,, = 500, the average number of mosquito
bites at n = 5 and, increasing the recovery rate of asymptomatic humans at v; = 0.5, we reach
the disease-free equilibrium point of the model, as shown on Figure |7l So, malaria die out! The
corresponding basic reproduction number is Ry = 0.81 < 1.

Figures [5] and [6] highlight the significant role of asymptomatic and resistant strains infected
humans in the spread of malaria. When the recovery rate increases, the number of recovered
individuals also increases, and if it decreases, the number of recovered individuals likewise de-
creases. In the past, this class of infected individuals was completely ignored. However, we have
now contributed by highlighting the important role it plays in the transmission dynamics of
malaria. Increasing the recovery rate +; of asymptomatic humans helps to decrease the propor-
tions ag and &3 of resistant strains humans among symptomatic and asymptomatic respectively
as shown on Figure[6] Therefore reduces the resistant strains infected humans in the population.
All well-known malaria control strategies must be revised to take into account asymptomatic
cases and those carrying resistant strains. The epidemiological implication and the resulting
public health policy is that mass screening programs should be implemented to identify asymp-
tomatic individuals and ensure their full recovery. Additionally, to avoid drug resistance and
relapse of ignorant infected individuals, a control test should be organized after each malaria
treatment.

670



Y. T. MANGONGO et al.: MATHEMATICAL MODEL OF MALARIA TRANSMISSION DYNAMICS: EVA...

Data availability

All data used to support our findings are included within the article.

Funding

This research was not funded.

Conflicts of interests

The authors declare there is no conflicts of interests regarding the publication of this paper.

References

African Leaders Malaria Alliance (ALMA). (2023). African malaria progress re-
port.  Available  at: https://alma2023.org/heads-of-state-and-government/
african-union-malaria-progressreports/2023-africa-malaria-progress-report/.

Aguilar, J.B., Gutierrez, J.B. (2020). An epidemiological model of malaria accounting for asymp-
tomatic carriers. Bulletin of Mathematical Biology, 82(42).

Agusto, F., Tchuenche, J. (2013). Control strategies for the spread of malaria in humans with
variable attractiveness. Math Popul Stud., 20(2):82-100.

Akowe, E., Ahman, Q.O., Agbata, B.C., Joseph, S.0., Senewo, E.O., Danjuma A.Y. & Ya-
haya, D.J. (2025). A novel malaria mathematical model: integrating vector and non-vector
transmission pathways. BMC' Infectious Diseases, 25(322).

Andolina, C., Rek, J.C., Briggs, J., Okoth, J., Musiime, A., Ramjith J., ..., & Bousema, T.
(2021). Sources of persistent malaria transmission in a setting with effective malaria control
in eastern Uganda: a longitudinal, observational cohort study. Lancet Infectious Diseases, 21,
1568-1578.

Andrew, S., R, H.A. (1998). Dynamical Systems and Numerical Analysis. Oxford, vol. 2.

Anguelov, R., Dumont, Y. & Lubuma, J. (2012). Mathematical modeling of sterile insect tech-
nology for control of anopheles mosquito. Comput Math Appl., 64, 374-389.

Banegas, S., Escobar, D., Pinto, A., Moncada, M., Matamoros, G., Valdivia, H.O., Reyes,
A. & Fontecha, G. (2024). Asymptomatic malaria reservoirs in Honduras: A challenge for
elimination. Pathogens, 13(541).

Barnes, K.I., White, N.J. (2005). Population biology and antimalarial resistance: The transmis-
sion of antimalarial drug resistance in plasmodium falciparum. Acta Tropica, 94, 230-240.

Basir, F.A., Nieto, J.J., Raezah, A.A. & Abraha, T. (2025). Impact of local and global awareness
campaigns on malaria transmission: A mathematical model with protected human class and
optimal control approach. The European Physical Journal Plus, 140(262).

Beretta, E., Capasso, V. & Garao, D.G. (2018). A mathematical model for malaria transmis-
sion with asymptomatic carriers and two age groups in the human population. Mathematical
Biosciences, 300, 87-101.

671


https://alma2023.org/heads-of-state-and-government/african-union-malaria-progressreports/2023-africa-malaria-progress-report/
https://alma2023.org/heads-of-state-and-government/african-union-malaria-progressreports/2023-africa-malaria-progress-report/

ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.10, N.3, 2025

Bousema, T., Okell, L., Felger, I. & Drakeley, C. (2014). Asymptomatic malaria infections:
detectability, transmissibility and public health relevance. Nature Reviews Microbiology,
12(2014), 833-840.

Cai, L., Li, X., Tuncer, N., Martcheva, M. & Lashari, A.A. (2017). Optimal control of a malaria
model with asymptomatic class and superinfection. Mathematical Biosciences, 288, 94-108.

Caraballo, T., Han, X. (2016). Applied nonautonomous and random dynamical systems. Springer.

Centres for Diseases Control and Prevention (CDC). (2022). Malaria. Available at: https:
//www.cdc.gov/malaria/.

Diekmann, O., Heesterbeek, J. (2000). Mathematical epidemiology of infectious diseases: model
building, analysis and interpretation. Mathematical Biosciences, 5.

Djidjou-Demasse, R., Abiodun, G.J., Adeola, A.M. & Botai, J.O. (2020). Development and
analysis of a malaria transmission mathematical model with seasonal mosquito life-history
traits. Studies in Applied Mathematics, 144, 389-411.

Driessche, P. van den & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180,
29-48.

Driessche, P. van den & Watmough, J. (2008). Further notes on the basic reproduction number
in: Brauer F., P. van den Driessche, Wu J. (eds) mathematical epidemiology: lecture notes in
mathematical biosciences series. Springer, 1945, 159-178.

Fatmawati, Herdicho, F.F., Windarto, Chukwu, W. & Tasmon, H. (2021). An optimal control
of malaria transmission model with mosquito seasonal factor. Results in Physics, 25(104238).

Fatmawati, Windarto & Hanif, L. (2018). Application of optimal control strategies to HIV-
Malaria co-infection dynamics. Journal of Physics: Conference series, 974(012057).

Galatas, B., Bassat, Q. & Mayor, A. (2016). Malaria parasites in the asymptomatic: Looking
for the hay in the haystack. 50 Trends in Parasitology, 32(4), 296-308.

Gellow, G.T., Munganga, J.M.W. & Jafari, H. (2023). Analysis of a ten compartmental mathe-
matical model of malaria transmission. Advanced Mathematical Models € Applications, 8(2),
140-156.

Hamilton, A., Haghpanah, F., Hasso-Agopsowicz, M., Frost, 1., Lin, G., Schueller, E., Klein, E.
& Laxminarayan, R. (2023). Modeling of malaria vaccine effectiveness on disease burden and
drug resistance in 42 African countries. Communications medecine, 3(144).

Jaleta, S.F., Duressa, G.F. & Deressa, C.T. (2025). A mathematical modeling and optimal
control analysis of the effect of treatment-seeking behaviors on the spread of malaria. Frontiers
in Applied Mathematics and Statistics, 11(1552384).

Kaboré, A., Sangaré, B. & Traoré, B. (2024). Mathematical model of mosquito population dy-
namics with constants and periodic releases of wolbachia-infected males. Applied Mathematics
in Science and Engineering, 33(1):1-50.

Kamaldeen, O., Steffen, E. & Gumel, A. (2019). Weather-driven malaria transmission model
with gonotrophic and sporogonic cycles. Journal of Biological Dynamics, 13:288-324.

Keno, T.D., Obsu, L.L. & Makinde, O.D. (2022). Modeling and optimal control analysis of
malaria epidemic in the presence of temperature variability. Asian-FEuropean Journal of Math-
ematics, 15(1).

672


https://www.cdc.gov/malaria/
https://www.cdc.gov/malaria/

Y. T. MANGONGO et al.: MATHEMATICAL MODEL OF MALARIA TRANSMISSION DYNAMICS: EVA...

LaSalle, J.P. (1976). The stability of dynamical systems. Society for Industrial and Applied
Mathematics, 5, p.76.

Lindhlade, K.A., Steinhardt, L., Samuels, A., Kachur, S.P. & Slutsker, L. (2013). The silent
threat: asymptomatic parasitemia and malaria transmission. Fxpert Review of Anti-infective
Therapy, 11(6): 623-639.

Maithya, G., Kitetu, V. & Okwany, I. (2025). Mathematical malaria model focusing on the effects
of partial immunity, strong immunity, drug resistance and intensive treatment. Mathematical
Modelling and Applications, 10(1): 1-13.

Mangongo, Y.T., Bukweli, J-D.K., Kampempe, J-D.B., Mabela, R.M., & Munganga, J.M.W.
(2022). Stability and global sensitivity analysis of the transmission dynamics of malaria with
relapse and ignorant infected humans. Physica Scripta, 97(2): 1-22.

Mangongo, Y.T., Bukweli, J-D.K.& Kampempe, J-D.B. (2021). Fuzzy global stability analysis
of the dynamics of malaria with fuzzy transmission and recovery rates. American Journal of
Operations Research, 11: 257-282.

Mehra, S., Taylor, P.G., McCaw, J.M.& Flegg, J.A. (2014). A hybrid transmission model for plas-
modium vivax accounting for superinfection, immunity and the hypnozoite reservoir. Journal
of Mathematical Biology.

Ndoen, E., Wild, C., Dale, P., Sipe, N. & Dale, M. (2012). Mosquito longevity, vector capac-
ity and malaria incidence in west timor and central java, Indonesia. International Scholarly
Research Network, 5.

Olaniyi, S., Abimbade, S.F., Ajala, A.O. & Chuma, F.M. (2023). Efficiency and economic anal-
ysis of intervention strategies for recurrent malaria transmission. Quality and quantity.

Olaniyi, S., Mukamuri, M., Okusun, K. & Adepoju, O. (2022). Mathematical analysis of a social
hierarchy-structured model for malaria transmission dynamics. Results in Physics, 34:1-13.

Olaniyi, S., Okusun, K., Adesanya, S. & Lebelo, R. (2020). Modelling malaria dynamics with
partial immunity and protected travellers: optimal control and costeffectiveness analysis.
Journal of Biological Dynamics, 14:90-115.

Pongtavornpinyo, W., Yeung, S., Hastings, I.M., Dondorp, A.M., Day, N.P. & White, N.J.
(2008). Spread of anti-malaria drug resistance: Mathematical model with implications for
ACT drug policies. Malaria Journal, 7(229).

Prusty, D., Gupta, N., Upadhyay, A., Dar, A., Naik, B., Kumar, N. & Prajapati, V.K. (2021).
Asymptomatic malaria infection prevaling risks for human health and malaria elimination.
Infection, Genetics and FEvolution, 93:104987.

Qu, Z., Patterson, D., Zhao, L., Ponce, J., Edholm, C.J., Feldman, O.F.P & Childs, L.M. (2025).
Mathematical modeling of malaria vaccination with seasonality and immune feedback. Plos
Computational Biology, 21(5).

Rajnarayanan, A., Kumar, M. & Tridane, A. (2025). Analysis of a mathematical model for
malaria using data-driven approach. Scientific Reports, 15(27272).

Shi, Y., Chen, F., Wang, L. & Zhang, X. (2024). Dynamics analysis of a reaction-diffusion
malaria model accounting for asymptomatic carriers. Z. Angew. Math. Phys., 75.

Shuai, Z. & Driessche, P. van den (2013). Global stability of infectious disease models using
lyapunov functions. Society for Industrial and Applied Mathematics, 73(4):1513-1432.

673



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.10, N.3, 2025

Strugarek, M., Bossin, H. & Dumont, Y. (2018). On the use of the sterile insect release technique
to reduce or eliminate mosquito populations. Applied Mathematics Modeling, 68:443-470.

Sualey, N.A., Akuka, P.N.A., Seidu, B. & Asamoah, J.K.K. (2024). A mathematical analysis of
the impact of immature mosquitoes on the transmission dynamics of malaria. Computational
and Mathematical Models, 2024, p12.

Tadesse, F.G., Slater, H.C., Chali, W., Teelen, K., Lanke, K., Belachew, M., ..., & Bousema,
T. (2018). The relative contribution of symptomatic and asymptomatic plasmodium vivax
and plasmodium falciparum infections to the infectious reservoir in a low-endemic setting in
Ethiopia. Clinical Infectious Diseases, 66(12): 1883-1891.

Tchoumi, S., Rwezaura, H. & Tchuenche, J. (2023). A mathematical model with numerical simu-
lations for malaria transmission dynamics with differential susceptibility and partial immunity.
Health Anal, 3(100165).

Wako, B.H., Dawed, M.Y. & Obsu, L.L. (2025). Mathematical model analysis of malaria trans-
mission dynamics with induced complications. Scientific African, 28.

Wiggins, S., Golubitsky, N. (1990). Introduction to applied nonlinear dynamics systems and
chaos. Springer.

World Health Organization (WHO). (2023). World malaria report 2023. Available at: https://
www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023.

World Bank Group (WBG). (2025). Available at: https://data.worldbank.org/indicator/
SP.DYN.CBRT. IN.

Zhang, X., Liu, Q. & Zhu, H. (2020). Modeling and dynamics of wolbachia-infected male releases
and mating competition on mosquito control. Journal of Mathematical Biology, 81: 243-276.

Zhou, X., Liu, H. (2008). Local sensitivity analysis. In: Shekhar S. Xiong H. (eds). Encyclopedia
of GIS.

674


https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023
https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023
https://data.worldbank.org/indicator/SP.DYN.CBRT.IN
https://data.worldbank.org/indicator/SP.DYN.CBRT.IN

	Introduction
	Formulation of the model
	Mathematical analysis
	Well-posedness of the model
	Disease-free equilibrium and basic reproduction number
	Disease-free equilibrium (DFE)
	Basic reproduction number

	Global Asymptotic Stability of the DFE
	Endemic Equilibrium (EE)

	Numerical analysis
	Parameters presentation
	Local sensitivity analysis
	Numerical simulations

	Discussion and concluding remarks

