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Abstract. The paper presents a mathematical model of malaria transmission dynamics that incorporates the

asymptomatic stage and resistant strains in infectious humans. We identified the disease-free (free malaria) and

endemic (persistence of malaria) equilibriums of the model. Using the basic reproduction number R0, we con-

structed a suitable Lyapunov function to demonstrate the global asymptotic stability (GAS) of the disease-free

equilibrium point. When R0 ≤ 1, the disease-free equilibrium is global asymptotically stable. For R0 > 1,

we analyzed the global asymptotic stability (GAS) of the endemic equilibrium. We conducted the local sensi-

tivity analysis and numerical simulations for different scenarios. Our findings highlight the significant role of

asymptomatic humans and resistant strains in the transmission dynamics of malaria. Therefore, the well-known

strategies against malaria should be revised.
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1 Introduction

Malaria, one of the mosquito-borne diseases, remains a major public health problem worldwide,
particularly in African countries (CDC, 2022; WHO, 2023). Malaria is treatable and it can cause
death of humans, particularly children aged under 5 years and pregnant women. It originates
from the Plasmodium parasite, a protozoan that spreads in humans after being bitten by infected
adult female Anopheles mosquitoes. The five species of Plasmodium parasites that can infect
humans are Plasmodium falciparum (responsible of malaria severe cases), Plasmodium malariae,
Plasmodium vivax, Plasmodium ovale, and Plasmodium knowlesi (Shi et al., 2024). In Africa,
the African Leaders Malaria Alliance (ALMA) reveals that: the number of threats is still growing
to achieving the goal of eliminating malaria in Africa by 2030 (ALMA, 2023). The same source
reveals that across the continent, 1.27 billion individuals are at risk of malaria infection. Amongst
this population, there were 186 cases per 1,000 persons and 47 deaths per 100,000 persons.

The use of mathematics approach for describing the complex mechanism of malaria trans-
mission dynamics constitutes a helpful tool for better understanding and analyzing the spread
of the disease in order to advice policymakers. Based on this fact, several rich models (Basir et
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al., 2025; Djidjou-Demasse et al., 2020; Fatmawati et al., 2021; Gellow et al., 2023; Jaleta et al.,
2025; Kaboré et al., 2024; Keno et al., 2022; Mangongo et al., 2022; Olaniyi et al., 2023, 2022,
2020; Qu et al., 2025; Rajnarayanan et al., 2025; Sualey et al., 2024; Wako et al., 2025) have been
developed by researchers from the basic SEI, SEIS and SEIRS schemes. For example, Jaleta et
al. (2025) discussed a mathematical model for malaria transmission dynamics. In their paper,
authors analyzed the optimal control of the effect of treatment-seeking behaviors on the spread
of malaria. Qu et al. (2025) analyzed a vaccination mathematical model of malaria transmission
with seasonality and immune feedback. Rajnarayanan et al. (2025) analyzed a model for malaria
using data-driven approach. In their paper, authors presented a new framework for modeling
malaria transmission dynamics by integrating temperature and altitude-dependent transmission
functions into a compartmental SIR-SI model. Wako et al. (2025) developed a mathematical
model to analyze malaria transmission dynamics. In their model, they account for complica-
tions like severe anemia and organ dysfunction, which impact disease outcomes and health-care
systems. Many aspects were considered in these models, such that: the environmental, climate
factor in the life cycle of mosquito, partial immunity, social-hierarchical structure of humans,
the relapse of ignorant infected humans, the impact of Wolbachia bacteria in reducing the size
of mosquito population in their formulations. All of them have guided interventions such as
insecticide-treated nets (ITNs), indoor residual spraying (IRS), antimalarial medications (ACT)
and health education and community engagement (Akowe et al., 2025).

All the above mentioned intervention strategies focus on optimizing vector control and the
treatment of symptomatic cases (Andolina et al., 2021). However, in the context of malaria, some
infectious individuals are asymptomatic while others are symptomatic (Bousema et al., 2014;
Galatas et al., 2016; Lindhlade et al., 2013; Prusty et al., 2021). Andolina et al. (2021) stated
that symptomatic malaria cases represent only a small proportion of all Plasmodium infections.
In addition, Tadesse et al. (2018) confirm that in the low-endemic setting aiming for malaria
elimination, asymptomatic infections were highly prevalent and responsible for the majority
of onward mosquito infections (Andolina et al., 2021). Therefore, the early identification and
treatment of asymptomatic infections might accelerate elimination efforts. The asymptomatic
cases of malaria are often dues to submicroscopic, which are often below the threshold of de-
tection by microscopy or conventional malaria rapid test (MRT) (Andolina et al., 2021; Tadesse
et al., 2018). Banegas et al. (2024) discovered the existence of asymptomatic malaria reservoirs
in Honduras, which contribute to disease transmission and poses a challenge for elimination
efforts. Furthermore, the biology of Plasmodium reveals that, Gametocytes typically progress
through five distinct developmental stages. During the first three stages, these sexual forms are
sequestered in tissues, making them potentially vulnerable to drugs targeting the asexual stages
of the parasite. By stage 4, they re-enter the bloodstream, and at stage 5, mature Gametocytes
circulate freely and are resistant to most treatments, except for the 8-aminoquinolines (Barnes
& White, 2005; Pongtavornpinyo et al., 2008). To support this, the most expansive agent caused
malaria, is characterized by the accrual of a reservoir of dormant parasites known as Hypno-
zoites (Mehra et al., 2014). They can remain in a dormant state for many days (one month for
example) before reactivating to cause a relapse of malaria.

Considering these facts, some authors designed rich mathematical models to advice policy-
makers for the control of malaria. Aguilar & Gutierrez (2020) studied a mathematical model for
malaria transmission dynamics by accounting for asymptomatic carriers. Authors stated that,
the correct understanding of the influence of asymptomatic individuals on transmission dynamics
will provide a comprehensive description of the complex interplay between transmission agents.
Beretta et al. (2018) extended the model of Aguilar & Gutierrez (2020) by structured the human
population into two age groups. Recently, Shi et al. (2024) analyzed a reaction-diffusion malaria
model accounting for asymptomatic carriers. In their paper, authors introduced a time peri-
odic reaction-diffusion model for malaria spread, incorporating spatial heterogeneity, incubation
periods, symptomatic and asymptomatic carriers. To incorporate resistance to anti-malarials,
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Hamilton et al. (2023) introduced a mathematical model in 2023 to assess the effectiveness
of vaccination and anti-malarial resistance across 42 African countries. Maithya et al. (2025)
studied a mathematical malaria model by focusing on the effects of partial immunity, strong
immunity, drug resistance and intensive treatment.

Due to the significance of asymptomatic carriers and the development of resistant strains in
the transmission dynamics of malaria, in this paper we aim to develop a mathematical model to
evaluate the impact of asymptomatic infectious and those who develop resistant strains in the
dynamics transmission of malaria. We consider, in this paper, two types of individuals developing
resistant strains. The first are those who, after treatment, continue to carry Plasmodium in their
blood in a dormant form, without any symptoms and without being infectious; we call them
”ignorant infected”. The second are those who, after treatment, still have Plasmodium in their
blood along with clinical signs. They are therefore infectious, and we refer to them as ”infected
with resistant strains”.

The rest of the paper is organized as follows: In the next section, we state assumptions and
formulate the mathematical model. In section 3, analytical analysis is done, starting by the well
posedness, equilibrium of the proposed model and computing the basic reproduction number and
analyzing the local and global stability of equilibrium points. In section 4, sensitivity analysis
and numerical simulations are done to support our analytical analysis. We end the paper by
some concluding remarks and discussions in section 5.

2 Formulation of the model

We consider two populations, the human and mosquito populations. The total human population
at time t, Nh(t) is divided into seven mutually exclusive compartments, the susceptible, exposed,
asymptomatic, symptomatic, recovered, ignorant infected and infected with resistant strains
compartments, denoted by Sh, Eh, Ah, Ih, Rh,Mh and Th respectively. We assume that only
individuals in the Mh compartment can relapse at the rate ψ2, as they carry the Plasmodium
parasite without having been treated. At any time t, the total humans population follows this
relation:

Nh(t) = Sh(t) + Eh(t) +Ah(t) + Ih(t) +Rh(t) +Mh(t) + Th(t). (1)

The total mosquito population at any time t,Nm(t), is divided into three mutually exclusive
compartments, following the common SEI scheme. We have the susceptible, exposed and infec-
tious compartments, denoted by Sm, Em and Im respectively. At any time t, the total mosquito
population is governed by:

Nm(t) = Sm(t) + Em(t) + Im(t). (2)

Figure 1 gives the flow diagram of the transmission mechanism of the proposed model. The
susceptible human can contract malaria through a bite of an infectious mosquito. Considering
the average number of a mosquito bites, n and the probability that a bite by an infectious
mosquito to a susceptible human lead to an infection of this susceptible human, cmh, therefore,
the force of infection of mosquito to human is given by:

λh = cmhn
Im
Nh

. (3)

Additionally, susceptible mosquito can become infected when it bites an asymptomatic,
symptomatic or resistant strains infected humans. Considering the average number of a mosquito
bites n, and the probability that a bite by a susceptible mosquito to a symptomatic, asymp-
tomatic or resistant strains infected lead to an infection of this susceptible mosquito, chm, there-
fore, we define the force of infection of human to mosquito by:

λm = chmn
(Ah + Ih + Th)

Nh
. (4)
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The progression rates from asymptomatic humans to recovered, ignorant infected, and resistant
strains infected are γ1ξ1, γ1ξ2 and γ1ξ3 respectively. Here, γ1 is the recovery rate of asymptomatic
humans, while ξ1, ξ2 and ξ3 denote the proportions of asymptomatic humans who recover, are
ignorant infected, and carry resistant strains, respectively. Parameters ξ1, ξ2 and ξ3 are such
that ξ1 + ξ2 + ξ3 = 1. One can take ξ2 = 1 − ξ1 − k, where ξ3 = k and 0 ≤ k ≤ 1 − ξ1 for
ξ1 ∈ [0, 1[.

Sh Eh
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Rh

Th

Mh

Sm Em Im
Λm

Λh λh

η

σr

σ(1− r)
µµ
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Figure 1: Flow diagram of the proposed model

The progression rates from symptomatic humans to recovered, ignorant infected, and resis-
tant strains infected are γ2α1, γ2α2 and γ2α3, respectively. Here, γ2 is the recovery rate of
symptomatic humans, while α1, α2 and α3 denote the proportions of symptomatic humans who
recover, are ignorant infected, and carry resistant strains, respectively. Parameters α1, α2 and
α3 are such that α1+α2+α3 = 1. One can take α2 = 1−α1−p, where α3 = p and 0 ≤ p ≤ 1−α1

for α1 ∈ [0, 1[.
The progression rate from ignorant infected humans is ψ2(1 − ρ2), where ψ2 is the relapse

rate and 1 − ρ2 is the proportion of ignorant infected humans who relapse. Consequently, ρ2

represents the proportion of ignorant infected humans who recover.
In this paper, we made the following assumptions:

• Only individuals in the Mh compartment can relapse, and the relapse occurs exclusively
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in the symptomatic compartment, Ih.

• Individuals in the Th compartment can die due to parasite resistance in the blood at rate
δ2, or recover if the immune system enhances at rate ψ1.

• Recovered individuals lose their acquired immunity at rate η.

• Humans can die naturally at rate µ, which is independent of the recruitment rate Λh.

• Mosquitoes can die naturally at rate µm, independent of their recruitment rate Λm.

All parameters of the proposed model are summarized in Table 1.

Table 1: Descriptions of parameters of the Model (5)-(14)

Parameters Descriptions

Λh recruitment rate of humans
chm probability that a bite by a susceptible mosquito on a symptomatic,

asymptomatic or resistant strains humans leads to infection of the mosquito
cmh probability that a bite by an infectious mosquito on a susceptible

human leads to infection of the human
σ latent rate of humans
r proportion of asymptomatic humans

1− r proportion of symptomatic humans
µ natural death rate of humans
δ1 malaria-induced death rate of symptomatic humans
δ2 malaria-induced death rate of resistant strains humans
γ1 recovery rate of asymptomatic humans
γ2 recovery rate of symptomatic humans
ξ1 proportion of asymptomatic humans who recover
ξ2 proportion of ignorant infected among asymptomatic humans
ξ3 proportion of resistant strains infected among asymptomatic humans
α1 proportion of symptomatic humans who recover
α2 proportion of ignorant infected among symptomatic humans
α3 proportion of resistant strains infected among symptomatic humans
η rate of loss of acquired immunity
ψ1 recovery rate of resistant strains individuals
ψ2 relapse rate
ρ2 proportion of ignorant infected who recover

(1− ρ2) proportion of ignorant infected who relapse

Λm recruitment rate of mosquitoes
µm natural death rate of mosquitoes
n the average number of mosquito bites
σm latent rate of mosquitoes

Susceptible humans, S(t) increase at the constant recruitment rate Λh and the rate of loss
of acquired immunity from recovered humans η, and decrease at the rates λh and µ. So, the
evolution in time of the susceptible humans can be modeled by the following differential equation:

dSh(t)

dt
= Λh − (λh + µ)Sh + µRh.

Exposed humans, E(t), increase through the incidence λhSh and decrease at the latent rate,
σ and the natural death rate µ of humans. Therefore, the evolution over time of the exposed
humans follows this differential equation:

dEh(t)

dt
= λhSh − (σ + µ)Eh.

Asymptomatic humans, A(t), increase through the progression rate rσ and decrease at the
recovered rate, γ1, of asymptomatic humans and natural death rate µ of humans. Therefore,
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the evolution over time of the asymptomatic humans is governed by this differential equation:

dAh(t)

dt
= rσEh − (γ1 + µ)Ah.

In the same manner, we can establish the evolution equations for the other human compart-
ments in the proposed model. The same principle is applied to the mosquito compartments.
These lead to the following system of ODEs, System (5)-(14).

dSh
dt

= Λh − (λh + µ)Sh + ηRh (5)

dEh
dt

= λhSh − (σ + µ)Eh (6)

dAh
dt

= rσEh − (γ1 + µ)Ah (7)

dIh
dt

= (1− r)σEh + ψ2(1− ρ2)Mh − (γ2 + δ1 + µ)Ih (8)

dRh
dt

= γ1ξ1Ah + γ2α1Ih + ψ1Th + ψ2ρ2Mh − (η + µ)Rh (9)

dMh

dt
= γ1ξ2Ah + γ2α2Ih − (ψ2 + µ)Mh (10)

dTh
dt

= γ1ξ3Ah + γ2α3Ih − (ψ1 + µ+ δ2)Th (11)

dSm
dt

= Λm − (λm + µm)Sm (12)

dEm
dt

= λmSm − (σm + µm)Em (13)

dIm
dt

= σmEm − µmIm (14)

System (5)-(14) is appended with the following non-negative initial conditions below:

(Sh(0), Eh(0), Ah(0), Ih(0), Rh(0),Mh(0), Th(0), Sm(0), Em(0), Im(0))

= (Sh0, Eh0, Ah0, Ih0, Rh0,Mh0, Th0, Sm0, Em0, Im0) ≥ 0. (15)

3 Mathematical analysis

In this section, we conduct a qualitative analysis of the proposed model. We begin by examining
the well-posedness of the model, searching for the disease free-equilibrium (DFE) point, and
calculating the basic reproduction number. Subsequently, we establish the global asymptotic
stability (GAS) of the DFE. In addition, we prove the local asymptotic stability (LAS) of the
endemic equilibrium (EE) point of the model.

3.1 Well-posedness of the model

Let X(t) = (Sh, Eh, Ah, Ih, Rh,Mh, Th, Sm, Em, Im) a vector solution of system (5)-(14) and
f : Ω ⊂ R10

+ −→ R10
+ , where the feasible set Ω is defined by:

Ω =

{
(Sh, Eh, Ah, Ih, Rh,Mh, Th, Sm, Em, Im) ∈ R10

+ : 0 ≤ Nh(t) ≤ Λh
µ
and 0 ≤ Nm(t) =

Λm
µm

}
,

is a compact set of R10
+ and f(X(t)) = (f1, f2, f3, f4, f5, f6, f7, f8, f9, f10), where:
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

f1(X(t)) = Λh − (λh + µ)Sh + ηRh
f2(X(t)) = λhSh − (σ + µ)Eh
f3(X(t)) = rσEh − (γ1 + µ)Ah
f4(X(t)) = (1− r)σEh + ψ2(1− ρ2)Mh − (γ2 + δ1 + µ)Ih
f5(X(t)) = γ1ξ1Ah + γ2α1Ih + ψ1Th + ψ2ρ2Mh − (η + µ)Rh
f6(X(t)) = γ1ξ2Ah + γ2α2Ih − (ψ2 + µ)Mh

f7(X(t)) = γ1ξ3Ah + γ2α3Ih − (ψ1 + µ+ δ2)Th
f8(X(t)) = Λm − (λm + µm)Sm
f9(X(t)) = λmSm − (σm + µm)Em
f10(X(t)) = σmEm − µmIm

. (16)

Theorem 1 (Well-posedness of the model). Given the non negative initial conditions in (15),
the system (5)-(14) is a dynamical system on the biological feasible region Ω. Furthermore, the
invariant compact set Ω is attracting in R10

+ with the given initial conditions.

Proof. The proof consists of two steps: First, we show that, for non-negative initial conditions,
system (5)-(14) admits a unique non-negative solution for all t ≥ 0, which lies within the feasible
set Ω. We also demonstrate that Ω is a positively invariant set for the system. Second, we prove
that any solution of system (5)-(14) remains within Ω.

For the first step, functions fi in (16) are C∞−functions, which implies C1−functions. Hence,
function f is differentiable. Consequently, from the standard theorem of the dynamical system
(Andrew & R, 1998; Wiggins & Golubitsky, 1990), f is locally Lipschitz continuous in some open
ball containing X(0). Therefore, it follows by Cauchy-Lipschitz theorem that the system (5)-(14)
has a unique solution, which exists locally. In addition, suppose that X(t) is a solution of system
(5)-(14) for X(0) ≥ 0, and let t0 be the smallest positive t such that Sh(t0) = 0 or Eh(t0) = 0 or
Ah(t0) = 0 or Ih(t0) = 0 or Rh(t0) = 0 or Mh(t0) = 0 or Th(t0) = 0 or Sm(t0) = 0 or Em(t0) = 0
or Im(t0) = 0. By continuity of functions Sh, Eh, Ah, Ih, Rh,Mh, Th, Sm, Em and Im, there exists

t∗ > t0 such that if Sh(t0) = 0, then from equation (5), we have dSh(t0)
dt = Λh+ηRh(t0) ≥ 0. Thus

for all t ∈ [t0, t
∗], Sh(t) ≥ 0. Consequently, Sh is non negative for all t. In the same manner, we

can establish the non negativity of Eh, Ah, Ih, Rh,Mh, Th, Sm, Em and Im for all t ≥ 0. Hence,
the solution X(t) of the model are non negatives for all t ≥ 0. Therefore, the feasible set Ω is
positively invariant, consequently for all t ≥ 0 the solution remains positive.

By adding equations (5)-(11), we obtain:

dNh(t)

dt
= Λh − µNh − δ1Ih − δ2Th

≤ Λh − µNh (17)

Applying Gronwall inequality to the relation (17), we obtain:

Nh(t) ≤ Λh
µ

+

(
Nh0 −

Λh
µ

)
exp(−µt).

As t→ +∞,
0 ≤ Nh(t) ≤ Λh

µ
for 0 ≤ Nh0 ≤

Λh
µ
, (18)

Likewise, adding equations (12)-(14), we get:

dNm(t)

dt
= Λm − µmNm.

Solving this first order differential equation, we obtain:

Nm(t) =
Λm
µm

+ exp(−µmt)
(
Nm0 −

Λm
µm

)
.

654



Y.T. MANGONGO et al.: MATHEMATICAL MODEL OF MALARIA TRANSMISSION DYNAMICS: EVA...

As t→ +∞,

0 ≤ Nm(t) =
Λm
µm

. (19)

This means that, for all t ≥ 0, all solution of system (5)-(14) satisfies relations (18) and (19).
Furthermore, when a solution of system (5)-(14) starts outside of the feasible set Ω, with Nh0 >
Λh
µ or Nm0 > Λm

µm
, it follows from relations (18) and (19) that lim supt→∞Nh(t) ≤ Λh

µ and

lim supt→∞Nm(t) ≤ Λm
µm

. Thus, the region Ω is attracting. Combining the above two steps and
using theorem 2.1.5 in (Andrew & R, 1998), we conclude that the system (5)-(14) defines a
dynamical system on Ω. Additionally, let us verify the dissipation condition to conclude about
the global existence and the boundedness of the solution (Caraballo & Han, 2016).

f(X).X = (f1, f2, f3, f4, f5, f6, f7, f8, f9, f10).(Sh, Eh, Ah, Ih, Rh,Mh, Th, Sm, Em, Im)

= [Λh − (λh + µ)Sh + ηRh]Sh + [λhSh − (σ + µ)Eh]Eh + [rσEh − (γ1 + µ)Ah]Ah

+ [(1− r)σEh + ψ2(1− ρ2)Mh − (γ2 + δ1 + µ)Ih]Ih

+ [γ1ξ1Ah + γ2α1Ih + ψ1Th + ψ2ρ2Mh − (η + µ)Rh]Rh

+ [γ1ξ2Ah + γ2α2Ih − (ψ2 + µ)Mh]Mh + [γ1ξ3Ah + γ2α3Ih − (ψ1 + µ+ δ2)Th]Th

+ [Λm − (λm + µm)Sm]Sm + [λmSm − (σm + µm)Em]Em + [σmEm − µmIm]Im

≤ (7µ+ 3µm + σ + γ1 + γ2 + δ1 + η + ψ2 + ψ1 + δ2 + σm)||X||2

+ (Λh + η + σ + ψ2γ1 + γ2 + ψ1)N2
h + (2cmhnN

2
h + Λm + 2chmn+ σm)N2

m

= a||X||2 + b,

where a = 7µ+ 3µm + σ + γ1 + γ2 + δ1 + η + ψ2 + ψ1 + δ2 + σm and
b = (Λh + η+σ+ψ2γ1 + γ2 +ψ1)N2

h + (2cmhnN
2
h + Λm + 2chmn+σm)N2

m. Hence, there exists a
unique solution X(t) of system (5)-(14) globally defined in time and since Sh(t) ≤ Nh(t), Eh(t) ≤
Nh(t), Ah(t) ≤ Nh(t), Ih(t) ≤ Nh(t), Rh(t) ≤ Nh(t),Mh(t) ≤ Nh(t), Th(t) ≤ Nh(t), Sm(t) ≤
Nm(t), Em(t) ≤ Nm(t), Im(t) ≤ Nm(t), for all t ≥ 0, the solution X(t) is bounded.

3.2 Disease-free equilibrium and basic reproduction number

3.2.1 Disease-free equilibrium (DFE)

Theorem 2 (Equilibrium of the model). The system (5)-(14) admits at least one equilibrium
point in the positively invariant compact set Ω.

Proof. To determine the equilibrium of the model system (5)-(14), we set the right-hand side of
system (5)-(14) equals to zero. We have then:

0 = Λh − (λh + µ)Sh + ηRh (20)

0 = λhSh − (σ + µ)Eh (21)

0 = rσEh − (γ1 + µ)Ah (22)

0 = (1− r)σEh + ψ2(1− ρ2)Mh − (γ2 + δ1 + µ)Ih (23)

0 = γ1ξ1Ah + γ2α1Ih + ψ1Th + ψ2ρ2Mh − (η + µ)Rh (24)

0 = γ1ξ2Ah + γ2α2Ih − (ψ2 + µ)Mh (25)

0 = γ1ξ3Ah + γ2α3Ih − (ψ1 + µ+ δ2)Th (26)

0 = Λm − (λm + µm)Sm (27)

0 = λmSm − (σm + µm)Em (28)

0 = σmEm − µmIm (29)
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From Equations (27), (28), (29), (26), (25), (24), (23), (22), (21) and (20) we obtain respec-
tively:

Sm =
Λm

λm + µm
, (30)

Em =
λmΛm

(σm + µm)(λm + µm)
, (31)

Im =
σmλmΛm

µm(σm + µm)(λm + µm)
, (32)

Th =
γ1ξ3Ah + γ2α3Ih
ψ1 + µ+ δ2

, (33)

Mh =
γ1ξ2Ah + γ2α2Ih

ψ2 + µ
, (34)

Rh =
γ1ξ1Ah + γ2α1Ih + ψ2ρ2Mh + ψ1Th

η + µ
, (35)

Eh =
(γ2 + δ1 + µ)Ih − ψ2(1− ρ2)Mh

(1− r)σ
, (36)

Eh =
(γ1 + µ)Ah

rσ
or Ah =

rσEh
γ1 + µ

, (37)

Eh =
λhSh
σ + µ

, (38)

Sh =
Λh + ηRh
λh + µ

. (39)

Equating Relations (36) and (37), we obtain:

Mh =
rσ(γ2 + δ1 + µ)Ih − (1− r)σ(γ1 + µ)Ah

rσ(1− ρ2)ψ2
(40)

Equating again Relations (34) and (40), we obtain:

Ih =
rσ(1− ρ2)ψ2γ1ξ2 + (1− r)σ(γ1 + µ)(ψ2 + µ)

rσ(ψ2 + µ)(γ2 + δ1 + µ)− rσ(1− ρ2)ψ2γ2α2
Ah (41)

We notice that from Equation (41), if Ah = 0, then Ih = 0, substitute them into Equation
(33), we obtain Th = 0. Therefore, after some substitutions, we obtain: Eh = Mh = Rh =
0, Sh = Λh

µ and Sm = Λm
µm
. In a vector notation, we can write:

X0 =

(
Λh
µ
, 0, 0, 0, 0, 0, 0,

Λm
µm

, 0, 0

)
. (42)

This equilibrium occurs in the absence of malaria in the population, called ”disease-free
equilibrium (DFE)”. In the absence of malaria, the human and mosquito susceptible populations
are proportional to the ratios Λh

µ and Λm
µm

respectively.
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3.2.2 Basic reproduction number

The basic reproduction number, R0, (Driessche & Watmough, 2008) defined as the average
number of secondary cases produced by one infectious individual during her/his entire period
of infectiousness in a completely susceptible population. It is a very important threshold for
the stability analysis of a given model. To compute R0, we use the next generation matrix
as developed and explained in (Diekmann & Heesterbeek, 2000; Driessche & Watmough, 2002,
2008). The disease compartments of the model system (5)-(14) are Eh, Ah, Ih,Mh, Th, Em and
Im. The system (5)-(14) can be reduced as Ẏ = F − V, where matrices F and V represent the
rate of appearance of new infections and the transfer rate of individuals between the infective
classes, respectively. We have then:

F(Y ) =



λhSh
0
0
0
0

λmSm
0


and V(Y ) =



(σ + µ)Eh
−rσEh + (γ1 + µ)Ah

−(1− r)σEh − ψ2(1− ρ2)Mh + (γ2 + µ+ δ1)Ih
−γ1ξ2Ah − γ2α2Ih + (ψ2 + µ)Mh

−γ1ξ3Ah − γ2α3Ih + (ψ1 + µ+ δ2)Th
(σm + µm)Em
−σmEm + µmIm


Setting that $1 = σ + µ,$2 = γ1 + µ,$3 = ψ2(1 − ρ2), $4 = γ2 + µ + δ1, $5 = ψ2 + µ,$6 =
ψ1 + µ + δ2 and $7 = σm + µm, the Jacobians of these matrices evaluated at the disease-free
equilibrium, X0 give respectively:

F =



0 0 0 0 0 0 cmhn
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0
chmnµΛm
µmΛh

chmnµΛm
µmΛh

0
chmnµΛm
µmΛh

0 0

0 0 0 0 0 0 0


and

V =



$1 0 0 0 0 0 0
−rσ $2 0 0 0 0 0

−(1− r)σ 0 $4 −$3 0 0 0
0 −γ1ξ2 −γ2α2 $5 0 0 0
0 −γ1ξ3 −γ2α3 0 $6 0 0
0 0 0 0 0 $7 0
0 0 0 0 0 −σm µm


.

And we have:

V −1 =



1
$1

0 0 0 0 0 0
rσ

$1$2

1
$2

0 0 0 0 0

(1−r)σ
$1$4

+
k1$3

k2$1$2$4

γ1ξ2$3

k2$2

1
$4

(
1 + α2γ2$3

k2

)
$3
k2

0 0 0

k1
k2$1$2

γ1ξ2$4

k2$2

α2γ2
k2

$4
k2

0 0 0

k7
γ1(α3γ2ξ2$3+ξ3k2)

k2$2$6

α3γ2(α2γ2$3+k2)
k2$4$6

α3γ2$3

k2$6

1
$6

0 0

0 0 0 0 0 1
$7

0

0 0 0 0 0 σm
µm$7

1
µm


657



ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.10, N.3, 2025

and

FV −1 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Λmchmµn

Λhµm
k3

Λmchmµn

Λhµm$2
k5

Λmchmµn

Λhµm$4
k6

Λmchmµn$3

k2Λhµm

(
1 + α3γ2

$6

)
Λmchmµn
Λhµm$6

0 0

0 0 0 0 0 0 0


,

with k1 = σ(γ2α2(1 − r)$2 + γ1rξ2$4), k2 = $4$5 − α2γ2$3, k3 = (1−r)σ
$1$4

+ k1$3
k2$1$2$4

, k4 =

k3

(
1 + α3γ2

$6

)
+ rσ
$1$2

(
1 + γ1ξ3

$6

)
, k5 = 1+γ1$3ξ2

k2

(
1 + α3γ2

$6

)
+γ1ξ3

$6
, k6 =

(
1 + γ2α3

$6

)(
1 + α2γ2$3

k2

)
and k7 = α3γ2

$1$4$6

(
(1− r)σ + k1$3

k2$2

)
+ γ1rσξ3

$1$2$6
.

The basic reproduction number, R0 is defined by:

R0 = ρ(F.V −1), (43)

where ρ(.) is the spectral radius of the next generation matrix FV −1. After some computations,
we obtain:

R0 = ρ(F.V −1)

= n

√
cmhchmσσmµΛm

µ2
m$1$2$6$7k2Λh

(R01 +R02), (44)

where R01 = r [k2($6 + γ1ξ3) + γ1ξ2$3(γ2α3 +$6)] and R02 = (1− r)$2$5($6 + γ2α3).

Remark. The basic reproduction number, R0, representing the average number of secondary
malaria cases produced by a single infectious individual during his/her infectious period, can be
decomposed into two terms: R01, the contribution from asymptomatic humans, and R02, the
contribution from symptomatic humans. Furthermore, all these contributions are weighted by
the mosquito biting term, n, which represents the average number of mosquito bites per human.
When the basic reproduction number R0 is less than one, malaria dies out. When it is greater
than one, malaria continues to spread in the population. The fractions Λm

Λh
and 1/µm represent

the relative population dynamics of mosquitoes versus humans in the model and the survival
period of mosquitoes respectively. The ratio µ/µm represents the relative measure of mortality
between human and mosquito populations. When it is high, it indicates that human mortality
is much greater than mosquito mortality and vice versa. This ratio is very important, as it
helps in understanding population dynamics and the impact of interventions, such as mosquito
control.

3.3 Global Asymptotic Stability of the DFE

Theorem 3 (GAS of the DFE). The disease free-equilibrium X0 of model (5)-(14) is globally
asymptotically stable (GAS) in the positively invariant and compact set Ω whenever R0 ≤ 1. If
R0 > 1, the disease-free equilibrium is unstable, the system is uniformly persistent, and there
exists at least one equilibrium in int(Ω).

Proof. To prove the GAS, we need to construct a Lyapunov function L, depending on R0,
to determine whether its derivative is less than one. For this construction, we use the matrix-
theoretical method explained in (Shuai & Driessche, 2013). Let x = (Eh, Ah, Ih,Mh, Th, Em, Im)T
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and y = (Sh, Rh, Sm)T . Using matrices F, V,F and V, the computations of f(x, y) = (F −V )x−
F(x, y) + V(x, y) give:

f(x, y) = (F − V )x−F(x, y) + V(x, y)

=



cmhnIm

(
1− Sh

Nh

)
0
0
0
0

chmnµΛm
µmΛh

(Ah + Ih + Th)

Nh

(
Nh −

µmΛh
µΛm

Sm

)
0


≥



cmhnIm

(
1− Sh

Nh

)
0
0
0
0
0
0


and

V −1F =



0 0 0 0 0 0
cmhn

$1

0 0 0 0 0 0
cmhnrσ

$1$2

0 0 0 0 0 0
cmhn

$1$4

(
(1− r)σ +

k1$3

k2$2

)
0 0 0 0 0 0

k1cmhn

k2$1$2

0 0 0 0 0 0
cmhn

$6

(
α3γ2k3 +

γ1rσξ3

$1$2

)
0

Λmchmµn

Λhµm$7

Λmchmµn

Λhµm$7
0

Λmchmµn

Λhµm$7
0 0

0
Λmchmµnσm

Λhµ2
m$7

Λmchmµnσm
Λhµ2

m$7
0

Λmchmµnσm
Λhµ2

m$7
0 0



.

Since Sh
Nh
≤ 1, then f(x, y) ≥ 0. Again, we observe that F ≥ 0, V −1 ≥ 0 and f

(
x, (Λh

µ , 0,
Λm
µm

)T
)

=

0 in the invariant feasible set Ω. Therefore, since the matrix V −1F is reducible, we use theo-
rem 2.1 of (Shuai & Driessche, 2013) to construct the Lyapunov function of the model system
(5)-(14). For this construction, let suppose that ωT = (ω1, ω2, ω3, ω4, ω5, ω6, ω7) ≥ 0 be the left
eigenvector of the non-negative matrix V −1F corresponding to the eigenvalue R0. Then:

(ω1, ω2, ω3, ω4, ω5, ω6, ω7)V −1F = R0(ω1, ω2, ω3, ω4, ω5, ω6, ω7) (45)

The left hand side of Equality (45) gives:

ωTV −1F =

(
0,

Λmchmµn

µm$7Λh
ω6 +

Λmchmµnσm
µ2
m$7Λh

ω7,
Λmchmµn

µm$7Λh
ω6 +

Λmchmµnσm
µ2
m$7Λh

ω7, 0,

Λmchmµn

µm$7Λh
ω6 +

Λmchmµnσm
µ2
m$7Λh

ω7, 0,
cmhn

$1
ω1 +

cmhnrσ

$1$2
ω2 +Aω3

+
k1cmhn

k2$1$2
ω4 +Bω5

)
, (46)

where A =
cmhn

$1$4

(
(1− r)σ +

k1$3

k2$2

)
and B =

cmhn

$6

(
α3γ2k3 +

γ1rσξ3

$1$2

)
.

Equating relations (45) and (46), we obtain: ω1 = ω4 = ω6 = 0, and ω2 = ω3 = ω5 =
Λmchmµnσm
µ2
m$7ΛhR0

ω7, with ω7 > 0. Consequently,
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ωT =

(
0,

Λmchmµnσm
µ2
m$7ΛhR0

ω7,
Λmchmµnσm
µ2
m$7ΛhR0

ω7, 0,
Λmchmµnσm
µ2
m$7ΛhR0

ω7, 0, ω7

)
. By theorem 2.1 of (Shuai

& Driessche, 2013), the function L defined by:

L = ωTV −1x

=
Λmchmµnσm
µ2
m$7ΛhR0

[(
rσ

$1$2
+

(1− r)σ
$1$4

+
k1$3

k2$1$2$4
+ k7

)
Eh

+

(
1

$2

(
1 +

γ1ξ2$3

k2
+
γ1ξ3(α3γ2$3 + k2)

k2$6

))
Ah +

(
1

$4

(
1 +

α2γ2$3

k2
+
α3γ2(α2γ2$3 + k2)

k2$6

))
Ih

+
$3

k2

(
1 +

α3γ2

$6

)
Mh +

1

$6
Th

]
ω7 +

σmω7

µm$7
Em +

ω7

µm
Im

is a candidate Lyapunov function for system (5)-(14). The differentiation of L with respect to
time t gives:

L̇ = (R0 − 1)ωTx− ωTV −1f(x, y)

= (R0 − 1)

[
Λmchmµnσm
µ2
m$7ΛhR0

(Ah + Ih + Th) + Im

]
ω7

− Λmchmcmhµn
2σmω7Im

µ2
m$7$1ΛhR0

[
rσ

$2
+

(1− r)σ
$4

+
k1$3

k2$2$4
+$1k7

](
1− Sh

Nh

)
. (47)

Since
Sh
Nh
≤ 1, ifR0 ≤ 1, then L̇ < 0, which implies that function L is a Lyapunov function for the

system (5)-(14). Furthermore, L̇ = 0 implies that Ah = Ih = Th = Im = 0. Therefore, the largest
invariant set of the model when L̇ = 0 in int(Ω) is the singleton {X0}. Thus, by the LaSalle’s
invariance principle (LaSalle, 1976), the disease-free equilibrium X0 is globally asymptotically
stable provided that R0 ≤ 1. In addition, if R0 > 1, then L̇ > 0 for Sh

Nh
= 1. Therefore,

by continuity, L̇ remains positive in a small neighborhood of the disease-free equilibrium X0,
implies that X0 is unstable when R0 > 1. Using theorem 2.1 of (Shuai & Driessche, 2013), the
system (5)-(14) is uniformly persistent implies that there exists at least one endemic equilibrium
of model system (5)-(14), noted by X∗.

3.4 Endemic Equilibrium (EE)

Let X∗ = (S∗h, E
∗
h, A

∗
h, I
∗
h, R

∗
h,M

∗
h , T

∗
h , S

∗
m, E

∗
m, I

∗
m) be the endemic equilibrium (EE) of the model

system (5)-(14). Then, one can obtain the endemic equilibrium by setting that the right hand
side of system (5)-(14) is equal to zero. That is:



0 = Λh − (λ∗h + µ)S∗h + ηR∗h
0 = λ∗hS

∗
h − (σ + µ)E∗h

0 = rσE∗h − (γ1 + µ)A∗h
0 = (1− r)σE∗h + ψ2(1− ρ2)M∗h − (γ2 + δ1 + µ)I∗h
0 = γ1ξ1A

∗
h + γ2α1I

∗
h + ψ1T

∗
h + ψ2ρ2M

∗
h − (η + µ)R∗h

0 = γ1ξ2A
∗
h + γ2α2I

∗
h − (ψ2 + µ)M∗h

0 = γ1ξ3A
∗
h + γ2α3I

∗
h − (ψ1 + µ+ δ2)T ∗h

0 = Λm − (λ∗m + µm)S∗m
0 = λ∗mS

∗
m − (σm + µm)E∗m

0 = σmE
∗
m − µmI∗m

; (48)

where λ∗m = chmn
(A∗h + I∗h + T ∗h )

N∗h
and λ∗h = cmhn

I∗m
N∗h

. After some algebraic computations of the

system (48), we obtain the endemic equilibrium X∗ = (S∗h, E
∗
h, A

∗
h, I
∗
h, R

∗
h,M

∗
h , T

∗
h , S

∗
m, E

∗
m, I

∗
m),
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where components are given respectively by the following implicit formula : S∗h =
Λh + ηR∗h
λ∗h + µ

,

E∗h =
λ∗hS

∗
h

σ + µ
,A∗h =

rσE∗h
γ1 + µ

, I∗h =
rσ(1− ρ2)ψ2γ1ξ2 + (1− r)σ(γ1 + µ)(ψ2 + µ)

rσ(ψ2 + µ)(γ2 + δ1 + µ)− rσ(1− ρ2)ψ2γ2α2
A∗h,

R∗h =
γ1ξ1A

∗
h + γ2α1I

∗
h + ψ2ρ2M

∗
h + ψ1T

∗
h

η + µ
,M∗h =

γ1ξ2A
∗
h + γ2α2I

∗
h

ψ2 + µ
, T ∗h =

γ1ξ3A
∗
h + γ2α3I

∗
h

ψ1 + µ+ δ2
,

S∗m =
Λm

λ∗m + µm
, E∗m =

λ∗mΛm
(σm + µm)(λ∗m + µm)

and I∗m =
σmλ

∗
mΛm

µm(σm + µm)(λ∗m + µm)
.

Theorem 4. [GAS of the EE] If R0 > 1, the endemic equilibrium X∗ is GAS in Ω.

Proof. We use Lyapunov function theory to prove the GAS. To construct the Lyapunov func-
tion, we use graph-theoretical method explained in (Shuai & Driessche, 2013). Let:

L1 = Sh − S∗h − S∗h ln(Sh/S
∗
h), L2 = Eh − E∗h − E∗h ln(Eh/E

∗
h), L3 = Ah −A∗h −A∗h ln(Ah/A

∗
h)

L4 = Ih − I∗h − I∗h ln(Ih/I
∗
h), L5 = Rh −R∗h −R∗h ln(Rh/R

∗
h), L6 = Mh −M∗h −M∗h ln(Mh/M

∗
h)

L7 = Th− T ∗h − T ∗h ln(Th/T
∗
h ), L8 = Sm−S∗m−S∗m ln(Sm/S

∗
m), L9 = Em−E∗m−E∗m ln(Em/E

∗
m)

L10 = Im − I∗m − I∗m ln(Im/I
∗
m)

Solving each equation of system (48) leads to the following quantities:

Λh =

(
cmhn

I∗m
N∗h

+ µ

)
S∗h − ηR∗h, σ + µ =

cmhnI
∗
mS
∗
h

N∗hE
∗
h

, γ1 + µ = rσE∗h/A
∗
h

γ2 + δ1 +µ = ((1− r)σE∗h +ψ2(1− ρ2)M∗h)/I∗h, η+µ = (γ1ξ1A
∗
h + γ2α1I

∗
h +ψ1T

∗
h +ψ2ρ2M

∗
h)/R∗h

ψ2 + µ = (γ1ξ2A
∗
h + γ2α2I

∗
h)/M∗h , ψ1 + δ2 + µ = (γ1ξ3A

∗
h + γ2α3I

∗
h)/T ∗h

Λm =

(
chmn

N∗h
(A∗h + I∗h + T ∗h ) + µm

)
S∗m, σm+µm =

chmn(A∗h + I∗h + T ∗h )S∗m
N∗hE

∗
m

and µm = σmE
∗
m/I

∗
m.

Using inequalities 1 − x + lnx ≤ 0 and 2 − x − 1
x ≤ 0 for x > 0 in the differentiation of

Li, i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} with respect to t give:

L̇1 =

(
1−

S∗h
Sh

)
Ṡh =

(
1−

S∗h
Sh

)(
Λh −

(
cmhn

Im
Nh

+ µ

)
Sh + ηRh

)
≤ cmhnI

∗
m

(
Im
I∗m
−
S∗h
Sh
− ln

Im
I∗m
− ln

S∗h
Sh

)
+ ηR∗h

(
Rh
R∗h

+
S∗h
Sh
− ln

S∗h
Sh
− ln

Rh
R∗h

)
= a1,10G1,10 + a15G15

L̇2 =

(
1−

E∗h
Eh

)
Ėh =

(
1−

E∗h
Eh

)(
cmhn

Im
Nh

Sh − (σ + µ)Eh

)
= cmhnI

∗
m

(
Im
I∗m
− Eh
E∗h
−
ImhE

∗
h

I∗mEh
+ 1

)
≤ cmhnI∗m

(
Im
I∗m
− Eh
E∗h
− ln

E∗h
Eh
− ln

Im
I∗m

)
= a2,10G2,10

L̇3 =

(
1−

A∗h
Ah

)
Ȧh =

(
1−

A∗h
Ah

)
(rσEh − (γ1 + µ)Ah) = rσE∗h

(
Eh
E∗h
− Ah
A∗h
−
A∗hEh
AhE

∗
h

+ 1

)
≤ rσE∗h

(
Eh
E∗h
− Ah
A∗h
− ln

A∗h
Ah
− ln

Eh
E∗h

)
= a32G32
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L̇4 =

(
1−

I∗h
Ih

)
İh =

(
1−

I∗h
Ih

)
((1− r)σEh + ψ2(1− ρ2)Mh − (γ2 + δ1 + µ)Ih)

≤ (1− r)σE∗h
(
Eh
E∗h
− Ih
I∗h
− ln

I∗h
Ih
− ln

Eh
E∗h

)
+ ψ2(1− ρ2)M∗h

(
Mh

M∗h
− Ih
I∗h
− ln

I∗h
Ih
− ln

Mh

M∗h

)
= a42G42 + a46G46

L̇5 =

(
1−

R∗h
Rh

)
Ṙh =

(
1−

R∗h
Rh

)
(γ1ξ1Ah + γ2α1Ih + ψ1Th + ψ2ρ2Mh − (η + µ)Rh)

≤ γ1ξ1A
∗
h

(
Ah
A∗h
− Rh
R∗h
− ln

R∗h
Rh
− ln

Ah
A∗h

)
+ γ2α1I

∗
h

(
Ih
I∗h
− Rh
R∗h
− ln

R∗h
Rh
− ln

Ih
I∗h

)
+ ψ1T

∗
h

(
Th
T ∗h
− Rh
R∗h
− ln

R∗h
Rh
− ln

Th
T ∗h

)
+ ψ2ρ2M

∗
h

(
Mh

M∗h
− Rh
R∗h
− ln

R∗h
Rh
− ln

Mh

M∗h

)
= a53G53 + a54G54 + a57G57 + a56G56

L̇6 =

(
1−

M∗h
Mh

)
Ṁh =

(
1−

M∗h
Mh

)
(γ1ξ2Ah + γ2α2Ih − (ψ2 + µ)Mh)

≤ γ1ξ2A
∗
h

(
Ah
A∗h
− Mh

M∗h
− ln

M∗h
Mh
− ln

Ah
A∗h

)
+ γ2α2I

∗
h

(
Ih
I∗h
− Mh

M∗h
− ln

M∗h
Mh
− ln

Ih
I∗h

)
= a63G63 + a64G64

L̇7 =

(
1−

T ∗h
Th

)
Ṫh =

(
1−

T ∗h
Th

)
(γ1ξ3Ah + γ2α3Ih − (ψ1 + µ+ δ2)Th)

≤ γ1ξ3A
∗
h

(
Ah
A∗h
− Th
T ∗h
− ln

T ∗h
Th
− ln

Ah
A∗h

)
+ γ2α3I

∗
h

(
Ih
I∗h
− Th
T ∗h
− ln

T ∗h
Th
− ln

Ih
I∗h

)
= a73G73 + a74G74

L̇8 =

(
1− S∗m

Sm

)
Ṡm =

(
1− S∗m

Sm

)(
Λm −

(
chmn

Ah + Ih + Th
Nh

+ µm

)
Sm

)
= 3chmnS

∗
m

(
1− Sm

S∗m
− S∗m
Sm

+ 1

)
+ µmS

∗
m

(
1− Sm

S∗m
− S∗m
Sm

+ 1

)
≤ 0

L̇9 =

(
1− E∗m

Em

)
Ėm =

(
1− E∗m

Em

)(
chmn

Ah + Ih + Th
Nh

Sm − (σm + µm)Em

)
= 3chmnS

∗
m

(
Sm
S∗m
− Em
E∗m
− E∗mSm
EmS∗m

+ 1

)
≤ 3chmnS

∗
m

(
Sm
S∗m
− Em
E∗m
− ln

E∗m
Em
− ln

Sm
S∗m

)
= a98G98

L̇10 =

(
1− I∗m

Im

)
İm =

(
1− I∗m

Im

)
(σmEm − µmIm) = σmE

∗
m

(
Em
E∗m
− Im
I∗m
− I∗mEm
ImE∗m

+ 1

)
≤ σmE

∗
m

(
Em
E∗m
− Im
I∗m
− ln

I∗m
Im
− ln

Em
E∗m

)
= a10,9G10,9

From these derivatives, the weighted associated digraph (G,A) is shown on Figure (2).

The weighted matrix A of the digraph is A = [aij ]10×10, where a1,10 = a2,10 = cmhnI
∗
m, a15 =

ηR∗h, a32 = rσE∗h, a46 = ψ2(1 − ρ2)M∗h , a42 = (1 − r)σE∗h, a53 = γ1ξ1A
∗
h, a54 = γ2α1I

∗
h, a57 =

ψ1T
∗
h , a56 = ψ2ρ2M

∗
h , a73 = γ1ξ3A

∗
h, a74 = γ2α3I

∗
h, a63 = γ1ξ2A

∗
h, a64 = γ2α2I

∗
h, a10,9 = σmE

∗
m, a98 =

3chmnS
∗
m and all other aij = 0. The value aij represents the weight of arc (j, i). From all these

calculations, the first condition of Theorem 3.5 of (Shuai & Driessche, 2013) is satisfied. Let
check now the second condition of the cited theorem. In the only one directed cycle, we have
G64 +G46 = 0. Then, the second condition of Theorem 3.5 of (Shuai & Driessche, 2013) is also

662



Y.T. MANGONGO et al.: MATHEMATICAL MODEL OF MALARIA TRANSMISSION DYNAMICS: EVA...

5

1

6 7

4 9

2

10 3

8

a54

a42a15

a56

a1,10

a74
a10,9a46

a64

a57

a63

a73

a2,10 a32

a98

a53

Figure 2: The weighted digraph (G,A) constructed from derivatives L̇i.

satisfied. Therefore, by the cited theorem, there exists ci, i ∈ {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} such that

L =

10∑
i=1

ciLi, (49)

is a Lyapunov function for the model system (5)-(14). The relations between ci can be derived
from Theorems (3.3) and (3.4) of (Shuai & Driessche, 2013) as follow: c1a15 = c5(a53 + a54 +
a56 + a57); c5a57 = c7(a73 + a74); c10a10,9 = c9a98; c10a10,9 = c1a1,10 + c2a2,10; c2a2,10 = c3a32 +
c4a42; c3a32 = c7a73 + c6a63. Therefore, c1 = c5(a53 + a54 + a56 + a57)/a15; c5 = c7(a73 +
a74)/a57; c2 = (c3a32 + c4a42)/a2,10; c10 = (c1a1,10 + c2a2,10)/a10,9; c9 = c10a10,9/a98 and c3 =
(c6a63 + c7a73)/a32. The fact that L̇ =

∑10
i=1 ciL̇i ≤ 0, implies that X = X∗. Consequently, the

largest invariant set for system (5)-(14) where L̇ = 0 is the singleton set {X∗}. This proves the
uniqueness and global asymptotic stability of {X∗} in the interior of Ω provided thatR0 > 1.

4 Numerical analysis

In this section, we present a quantitative analysis. After introducing the parameters, we conduct
the local sensitivity analysis and conclude with numerical simulations to support our qualitative
findings.

4.1 Parameters presentation

We present here the baseline values of parameters which will be used for numerical simulations.
Most of them, have been taken from the literature (Fatmawati et al., 2018; Mangongo et al., 2022;
Ndoen et al., 2012; Olaniyi et al., 2020) and others are computed and reasonable assumed. The
Table 2 gives description, baseline value, range for each parameter and their related sources. The
parameters σ, δ1, δ2, γ1, γ2, ξ1, ξ2, ξ3, α1, α2, α3, η, ψ1, ψ2, ρ2 and σm have for dimension day−1.
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The parameters chm and cmh are dimensionless. The parameters µ and µm have for dimensions
humans−1 × day−1 and mosquitoes−1 × day−1 respectively. The parameters Λh and Λm have
for dimensions humans× day−1 and mosquitoes× day−1 respectively.

Table 2: Baseline values for parameters of the model (5)-(14)

Param Descriptions Values Range Ref.
of values

Λh recruitment rate of humans 11,883.26 computed
chm probability that a bite by a 0.64 [0, 0.8] (Agusto & Tchuenche, 2013)

susceptible mosquito on a
symptomatic, asymptomatic
or resistant strains humans
leads to infection of
the mosquito

cmh probability that a bite by an 0.64 [0, 0.8] (Agusto & Tchuenche, 2013)
infectious mosquito on a
susceptible human leads
to infection of the human

σ latent rate of humans 0.054 - (Ndoen et al., 2012)
r proportion of asymptomatic 0.67 - (Andolina et al., 2021)

humans
µ natural death rate of humans 0.00421 [0, 0.05] (Agusto & Tchuenche, 2013)
δ1 malaria-induced death rate of 0.0001285 - (Mangongo et al., 2022)

symptomatic humans
δ2 malaria-induced death rate of 0.0001285 - (Mangongo et al., 2022)

resistant strains humans
γ1 recovery rate of asymptomatic 0.071 [1/1500, 1] (Kamaldeen et al., 2019)

humans
γ2 recovery rate of symptomatic 0.71 [1/1500, 1] (Kamaldeen et al., 2019)

humans
ξ1 proportion of asymptomatic 0.2 - (Mangongo et al., 2022)

humans who recover
ξ3 proportion of resistant 0.6 - assumed

strains infected among
asymptomatic humans

α1 proportion of symptomatic 0.2 - (Mangongo et al., 2022)
humans who recover

α3 proportion of resistant strains 0.6 - assumed
infected among symptomatic
humans

η rate of loss of acquired immunity 0.02 - (Mangongo et al., 2022)
ψ1 recovery rate of resistant strains 0.0471 [1/1500, 1] (Kamaldeen et al., 2019)

individuals
ψ2 relapse rate 0.5 - assumed
ρ2 proportion of ignorant infected 0.2 - (Mangongo et al., 2022)

who recover

Λm recruitment rate of mosquitoes 1,000 - (Cai et al., 2017)
µm natural death rate of mosquitoes 0.1435 [0.02, 0.2] (Anguelov et al., 2012)

(Strugarek et al., 2018)
(Zhang et al., 2020)

n the average number of mosquito bites 25 [0.1, 50] (Tchoumi et al., 2023)
σm latent rate of mosquitoes 0.0769 (Mangongo et al., 2022)

To compute Λh, we use the following formula Λh = τ×Nh
365×1000 , where τ is the birth rate

per 1,000 per year. Taking the birth rate per 1000 per year of the Democratic Republic of
Congo (DRC) for 2023, which is estimated to τ = 41 per 1,000 habitants (WBG, 2025) and
the population of DRC was about 105.79 million in 2023. Using these informations, we found
Λh = 11, 883.26. The latent period of malaria is ranged between 7 and 30 days Ndoen et
al. (2012). Taking inverse of the mean of this range we obtain the latent rate equals to σ =
0.054. Because the asymptomatic malaria cases represent a high proportion of all Plasmodium

664



Y.T. MANGONGO et al.: MATHEMATICAL MODEL OF MALARIA TRANSMISSION DYNAMICS: EVA...

infections, we take r = 2/3 as the proportion of asymptomatic humans. We take equal the
proportions α1 = ξ1 = 0.2 of asymptomatic and symptomatic humans who recover (Mangongo
et al., 2022). The numerical simulations will be done using the following initial conditions
Sh0 = 50000, Eh0 = 1000, Ah0 = 1000, Ih0 = 1000, Rh0 = 5000,Mh0 = 1000, Th0 = 1000, Sm0 =
500, Em0 = 250, Im0 = 250. That is Nh0 = 60000 and Nm0 = 1000.

4.2 Local sensitivity analysis

In this subsection, we provide the local sensitivity analysis of the basic reproduction number R0.
In analysis of the spread of a disease, the role of threshold R0 should be highlighted, in sense
that, it determines the extinction of a disease if it is less than unity (R0 < 1). The sensitivity
analysis gives an idea of the most important parameters to reduce very significantly R0 in order
to control malaria. Therefore, it’s very important to analyze its sensitivity according to each
control parameter composed it. For this purpose, we compute ∂R0

∂%
%
R0

for each parameter. This
leads to the sensitivity indices, displayed in Table 3, which measure the ratio of the relative
change in R0 to the relative change in parameter % (Zhou & Liu, 2008).

Table 3: Sensitivity indices

param formula: ∂R0
∂%

%
R0

values sens. index

n 1 25 1
Λm

1
2

1,000 1
2

γ2
γ2

[
∂R01
∂γ2

+ ∂R02
∂γ2

]
2(R01 +R02)

−
γ2

∂k2
∂γ2

2k2
0.71 -0.0453

ψ2

ψ2

[
∂R01
∂ψ2

+ ∂R02
∂ψ2

]
2(R01 +R02)

− ψ2($4 − α2γ2(1− ρ2))

2k2
0.5 −0.0452

γ1
γ1$2

[
∂R01
∂γ1

+ ∂R02
∂γ1

]
2$2(R01 +R02)

− γ1
2$2

0.071 -0.00244

r
R01

2(R01 +R02)
0.67 0.000282

ξ3
rγ1ξ3k2

2(R01 +R02)
0.6 0.000116

ξ2
γ1ξ2$3(γ2α3 +$6)

2(R01 +R02)
0.2 0.0000365

α3
γ2α3(rγ1ξ2$3 + (1− r)$2$5)

2(R01 +R02)
0.6 0.00000935

α2
−γ2α2$3(r($6 + γ1ξ3)−R01 −R02)

2k2(R01 +R02)
0.2 −0.00000837

The derivatives of R01 and R02 with respect to γ1 are given by
∂R01

∂γ1
= rk2ξ3 +ξ2$3(γ2α3 +$6)

and
∂R02

∂γ1
= (1 − r)$5($6 + γ2α3) respectively. The derivatives of R01 and R02 with respect

to γ2 are given by
∂R01

∂γ2
= rγ1ξ2$3α3 + r($6 + γ1ξ3)($5 − α2$3) and

∂R02

∂γ2
= (1− r)$2$5α3

respectively. The derivatives of R01 and R02 with respect to ψ2 are given by
∂R01

∂ψ2
= r[($6 +

γ1ξ3)($4−α2γ2(1−ρ2))+γ1ξ2(1−ρ2)(γ2α3+$6)] and
∂R02

∂ψ2
= (1−r)$2($6+γ2α3) respectively.

Finally, the derivative of k2 with respect to γ2 is given by
∂k2

∂γ2
= $5 − α2$3.

We consider ten controllable parameters. Arranging in the descending order of the absolute
value of their sensitivity indices, the average number of mosquito bites n takes the top of list
with sensitivity index 1 as shown on Figure 3. This means, reducing mosquito bites ensure
significantly the reduction of threshold R0. The recruitment rate of mosquitoes Λm comes
in the second position with sensitivity index +0.5. So, we have to reduce the recruitment of
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mosquitoes in order to control malaria. This can be implemented by maintaining a health
environment by destroyed mosquito eggs in puddles. The recovery rate of symptomatic humans
γ2 comes in the third position with sensitivity index -0.0453. The recovery rate of asymptomatic
humans γ1 takes the fourth position with sensitivity index -0.00244.

Figure 3: Sensitivity indices.

This shows the impact of asymptomatic humans in the spread of malaria. We have to increase
the recovery rate of asymptomatic humans in order to reduce the basic reproduction number
R0, which implies to control malaria. This can be implemented by a mass screening of humans
population and their treatment until complete recovered. Parameters r, ξ3, ξ2, ψ2, α3 and α2 do
not influence significantly the basic reproduction number because of their very low sensitivity
indices. In the next subsection, we provide some numerical simulations.

4.3 Numerical simulations

In this subsection, we provide some numerical simulations for the model system (5)-(14) by giving
first the endemic trends of both human and mosquito populations. We give the time evolution
of the recovered individuals Rh for different values of the recovery rate of asymptomatic humans
γ1. In addition, we provide scenarios for resistant strains humans for different configurations of
α3 and ξ3. Finally, we present a disease-free trend of the model.
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Figure 4: Endemic trends of humans and mosquitoes for parameter values on
Table 2. We obtain R0 = 1.03 > 1 and the estimated endemic point is

(1189340,305063,146230,11776,598736,7426,217163,390,4303,2321).

Figure 4 shows the endemic trends of both human and mosquito populations for parameter
values on Table 2. The related basic reproduction number R0 = 1.03, is in the same range
with the one obtained in the literature (Mangongo et al., 2022, 2021). This confirms the global
endemicity situation which occurs when the basic reproduction number is greater than unity as
proved in Theorem 4. That is, malaria continues to spread in the population.

Figures 5 and 6 show the important role of asymptomatic and resistant strains infected
humans in the spread of malaria. We can state that all the previous known strategies (optimizing
vector control and treatment of symptomatic cases) against malaria should be revised by taking
into account the presence of asymptomatic humans and those with resistant strains. Parameters
γ1, α3 and ξ3 are highlighted the role of asymptomatic and resistant strains infected humans in
the dynamics transmission of malaria.

Figure 5 shows the bad role of asymptomatic humans in the transmission dynamics of
malaria. The number of recovered humans increases with the recovery rate of asymptomatic
humans. We observe that with a high recovery rate of asymptomatic humans, many individuals
(asymptomatic, symptomatic and ignorant infected humans) recover. When reducing the recov-
ery rate of asymptomatic humans, a small number of individuals (asymptomatic, symptomatic
and ignorant infected humans) recover. The role of recovery rate γ1 of asymptomatic humans
should be capitalized in order to control malaria transmission dynamics.

Figure 6 shows many comparison of resistant strains infected humans under different con-
figurations of the proportion of resistant strains infected among symptomatic humans α3 and
the proportion of resistant strains infected among asymptomatic humans ξ3. Subfigure (a) sets
the value of ξ3 at 0.1 and shows six configurations of Th for six values of α3. In subfigure (b),
the value of ξ3 is fixed at 0.2, and six configurations of Th are given for six values of α3. Sub-
figure (c) sets ξ3 to 0.3 and presents six configurations of Th corresponding to six values of α3.
Subfigure (d) fixes ξ3 at 0.4 and illustrates six configurations of Th for different values of α3.
In subfigure (e), ξ3 is set to 0.5, and six configurations of Th are displayed for six values of α3.
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Figure 5: Evolution of recovered individuals for different values of γ1.

Finally, in subfigure (f), the value of ξ3 is fixed at 0.6, and six configurations of Th are shown
for six values of α3. The population of resistant strains infected humans is more influenced by
the proportions α3 and ξ3. Reducing these proportions in the population help to reduce the
number of individuals with resistant strains in the population. People should be treated until
to be completely recovered.

Figure 7 shows the malaria free trends for both humans and mosquitoes for parameter values
on Table 2 except γ1 = 0.5, n = 5 and Λm = 500. We obtain the basic reproduction number
R0 = 0.81 < 1 and the estimated disease-free point (2500000,0,0,0,0,0,0,3500,0,0). This shows
the global stability of the disease-free when the basic reproduction number is less than unity.
This confirms Theorem 3. We reach the disease-free equilibrium by reducing parameters Λm
and N , and by increasing parameter γ1. This shows again the important role of asymptomatic
humans in the spread of malaria. That is, we have to increase the recovery rate of asymptomatic
humans which will reduce their number on the human populations.

5 Discussion and concluding remarks

In this paper, we analyzed a model of malaria transmission dynamics by incorporating the
asymptomatic and resistant strains individuals in the human populations. To describe the dy-
namics of mosquito populations, we used the common SEI scheme. After proving the well
posedness of the model, we compute the basic reproduction number R0, which is composed of
two different terms (R01 and R02, contributions of asymptomatic and symptomatic humans).
All these contributions are weighted by the mosquito biting term. We proved that the disease-
free equilibrium (DFE) of the model is global asymptotically stable (GAS) whenever the basic
reproduction number is less than or equal to unity. For the case where the basic reproduc-
tion number is greater than unity, we analyzed the global asymptotic stability of the endemic
equilibrium (EE).

Sensitivity analysis, Table 3, reveals that the basic reproduction number R0, consequently
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(a) ξ3 = 0.1 and α3 = 0.6, 0.5, 0.4, 0.3, 0.2, 0.1 (b) ξ3 = 0.2 and α3 = 0.6, 0.5, 0.4, 0.3, 0.2, 0.1

(c) ξ3 = 0.3 and α3 = 0.6, 0.5, 0.4, 0.3, 0.2, 0.1 (d) ξ3 = 0.4 and α3 = 0.6, 0.5, 0.4, 0.3, 0.2, 0.1

(e) ξ3 = 0.5 and α3 = 0.6, 0.5, 0.4, 0.3, 0.2, 0.1 (f) ξ3 = 0.6 and α3 = 0.6, 0.5, 0.4, 0.3, 0.2, 0.1

Figure 6: Comparison of Th(t) under different α3 and ξ3 configurations.

the spread of malaria, is more influenced by the average number n of mosquito bites with
sensitivity index + 1, the recruitment rate of mosquitoes Λm with sensitivity index + 1/2, the
recovery rate of symptomatic human γ2 with sensitivity index -0.0453, the relapse rate ψ2 with
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Figure 7: Disease-free trends of humans and mosquitoes for parameter values on Table 2, except
γ1 = 0.5, n = 5 and Λm = 500. We obtain R0 = 0.81 < 1 and the estimated disease-free point is

(2500000,0,0,0,0,0,0,3500,0,0).

sensitivity index -0.0452 and the recovery rate of asymptomatic humans γ1 with sensitivity index
- 0.00244. Others parameters do not influence very significantly the basic reproduction number
R0, see Figure 3. Using Table 2, we found that the basic reproduction number is greater than
one (R0 = 1.03 > 1). This ensure the endemic situation of malaria as shown on Figure 4.
Reducing the recruitment rate of mosquitoes at Λm = 500, the average number of mosquito
bites at n = 5 and, increasing the recovery rate of asymptomatic humans at γ1 = 0.5, we reach
the disease-free equilibrium point of the model, as shown on Figure 7. So, malaria die out! The
corresponding basic reproduction number is R0 = 0.81 < 1.

Figures 5 and 6 highlight the significant role of asymptomatic and resistant strains infected
humans in the spread of malaria. When the recovery rate increases, the number of recovered
individuals also increases, and if it decreases, the number of recovered individuals likewise de-
creases. In the past, this class of infected individuals was completely ignored. However, we have
now contributed by highlighting the important role it plays in the transmission dynamics of
malaria. Increasing the recovery rate γ1 of asymptomatic humans helps to decrease the propor-
tions α3 and ξ3 of resistant strains humans among symptomatic and asymptomatic respectively
as shown on Figure 6. Therefore reduces the resistant strains infected humans in the population.
All well-known malaria control strategies must be revised to take into account asymptomatic
cases and those carrying resistant strains. The epidemiological implication and the resulting
public health policy is that mass screening programs should be implemented to identify asymp-
tomatic individuals and ensure their full recovery. Additionally, to avoid drug resistance and
relapse of ignorant infected individuals, a control test should be organized after each malaria
treatment.

670



Y.T. MANGONGO et al.: MATHEMATICAL MODEL OF MALARIA TRANSMISSION DYNAMICS: EVA...

Data availability

All data used to support our findings are included within the article.

Funding

This research was not funded.

Conflicts of interests

The authors declare there is no conflicts of interests regarding the publication of this paper.

References

African Leaders Malaria Alliance (ALMA). (2023). African malaria progress re-
port. Available at: https://alma2023.org/heads-of-state-and-government/

african-union-malaria-progressreports/2023-africa-malaria-progress-report/.

Aguilar, J.B., Gutierrez, J.B. (2020). An epidemiological model of malaria accounting for asymp-
tomatic carriers. Bulletin of Mathematical Biology, 82(42).

Agusto, F., Tchuenche, J. (2013). Control strategies for the spread of malaria in humans with
variable attractiveness. Math Popul Stud., 20(2):82-100.

Akowe, E., Ahman, Q.O., Agbata, B.C., Joseph, S.O., Senewo, E.O., Danjuma A.Y. & Ya-
haya, D.J. (2025). A novel malaria mathematical model: integrating vector and non-vector
transmission pathways. BMC Infectious Diseases, 25(322).

Andolina, C., Rek, J.C., Briggs, J., Okoth, J., Musiime, A., Ramjith J., ..., & Bousema, T.
(2021). Sources of persistent malaria transmission in a setting with effective malaria control
in eastern Uganda: a longitudinal, observational cohort study. Lancet Infectious Diseases, 21,
1568-1578.

Andrew, S., R, H.A. (1998). Dynamical Systems and Numerical Analysis. Oxford, vol. 2.

Anguelov, R., Dumont, Y. & Lubuma, J. (2012). Mathematical modeling of sterile insect tech-
nology for control of anopheles mosquito. Comput Math Appl., 64, 374-389.

Banegas, S., Escobar, D., Pinto, A., Moncada, M., Matamoros, G., Valdivia, H.O., Reyes,
A. & Fontecha, G. (2024). Asymptomatic malaria reservoirs in Honduras: A challenge for
elimination. Pathogens, 13(541).

Barnes, K.I., White, N.J. (2005). Population biology and antimalarial resistance: The transmis-
sion of antimalarial drug resistance in plasmodium falciparum. Acta Tropica, 94, 230-240.

Basir, F.A., Nieto, J.J., Raezah, A.A. & Abraha, T. (2025). Impact of local and global awareness
campaigns on malaria transmission: A mathematical model with protected human class and
optimal control approach. The European Physical Journal Plus, 140(262).

Beretta, E., Capasso, V. & Garao, D.G. (2018). A mathematical model for malaria transmis-
sion with asymptomatic carriers and two age groups in the human population. Mathematical
Biosciences, 300, 87-101.

671

https://alma2023.org/heads-of-state-and-government/african-union-malaria-progressreports/2023-africa-malaria-progress-report/
https://alma2023.org/heads-of-state-and-government/african-union-malaria-progressreports/2023-africa-malaria-progress-report/


ADVANCED MATHEMATICAL MODELS & APPLICATIONS, V.10, N.3, 2025

Bousema, T., Okell, L., Felger, I. & Drakeley, C. (2014). Asymptomatic malaria infections:
detectability, transmissibility and public health relevance. Nature Reviews Microbiology,
12(2014), 833-840.

Cai, L., Li, X., Tuncer, N., Martcheva, M. & Lashari, A.A. (2017). Optimal control of a malaria
model with asymptomatic class and superinfection. Mathematical Biosciences, 288, 94-108.

Caraballo, T., Han, X. (2016). Applied nonautonomous and random dynamical systems. Springer.

Centres for Diseases Control and Prevention (CDC). (2022). Malaria. Available at: https:

//www.cdc.gov/malaria/.

Diekmann, O., Heesterbeek, J. (2000). Mathematical epidemiology of infectious diseases: model
building, analysis and interpretation. Mathematical Biosciences, 5.

Djidjou-Demasse, R., Abiodun, G.J., Adeola, A.M. & Botai, J.O. (2020). Development and
analysis of a malaria transmission mathematical model with seasonal mosquito life-history
traits. Studies in Applied Mathematics, 144, 389-411.

Driessche, P. van den & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic
equilibria for compartmental models of disease transmission. Mathematical Biosciences, 180,
29-48.

Driessche, P. van den & Watmough, J. (2008). Further notes on the basic reproduction number
in: Brauer F., P. van den Driessche, Wu J. (eds) mathematical epidemiology: lecture notes in
mathematical biosciences series. Springer, 1945, 159-178.

Fatmawati, Herdicho, F.F., Windarto, Chukwu, W. & Tasmon, H. (2021). An optimal control
of malaria transmission model with mosquito seasonal factor. Results in Physics, 25(104238).

Fatmawati, Windarto & Hanif, L. (2018). Application of optimal control strategies to HIV-
Malaria co-infection dynamics. Journal of Physics: Conference series, 974(012057).

Galatas, B., Bassat, Q. & Mayor, A. (2016). Malaria parasites in the asymptomatic: Looking
for the hay in the haystack. 50 Trends in Parasitology, 32(4), 296-308.

Gellow, G.T., Munganga, J.M.W. & Jafari, H. (2023). Analysis of a ten compartmental mathe-
matical model of malaria transmission. Advanced Mathematical Models & Applications, 8(2),
140-156.

Hamilton, A., Haghpanah, F., Hasso-Agopsowicz, M., Frost, I., Lin, G., Schueller, E., Klein, E.
& Laxminarayan, R. (2023). Modeling of malaria vaccine effectiveness on disease burden and
drug resistance in 42 African countries. Communications medecine, 3(144).

Jaleta, S.F., Duressa, G.F. & Deressa, C.T. (2025). A mathematical modeling and optimal
control analysis of the effect of treatment-seeking behaviors on the spread of malaria. Frontiers
in Applied Mathematics and Statistics, 11(1552384).
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