ANNALES DE LA FACULTE DES SCIENCES, Vol. 1 (2015) 17-29

Analyse et Controle optimal pour un modéle d’une Tri thérapie contre
le VIH/sida

Ndondo Mboma A.", Walo Omana R., Lofutu Bolemole G., Bongeli Aikiafa P.

Département de Mathématiques-Informatique, Faculté des. Sciences, Université Kinshasa, B.P
190, Kinshasa XI, RDC

Abstract

Currently the patients infected with the VIH are treated by the association of 2 types of drugs
(Highly Activates AntiRetroviral Treatment, HAART); they are one or more inhibitors of
transcriptase opposite and stimulative immunizing of protease possibly associated with an
immunizing stimulant. The use of these long-term therapies (500 days) causes: undesirable
side-effects like an increasing intolerance of the patient’s body, a change of the virus thus a
fall of the effectiveness even an incapacity to treat the disease. The urgency is to contain the
virus on an asymptotic level. In this article, we propose deterministic models describing the
dynamic behavior of the infection under the action of a multi therapy; we use techniques of
analysis and of control for systems modelled by a system of ordinary differential equations,
we solve the optimal control problem and deduced from the requirements a treatment in
limited time minimizing the cost of treatment.

Keywords: Differential equations, Modeling, Infectious Diseases, Optimal control, Basic
Reproduction number

Résumé

Actuellement les patients infectés au VIH sont traités par 1’association de 2 types de médi-
caments (Highly active anti rétroviral traitement, HAART) ; il s’agit d’un ou plusieurs
inhibiteurs de transcriptase inverse et une stimulante immunitaire de protéase associée
éventuellement a un stimulant immunitaire. L’ utilisation de ces thérapies a long terme (
> 500 jours) provoque : Des effets secondaires indésirables dont une intolérance croissante
de I’organisme des malades. Une mutation du virus donc une baisse de I’efficacité voire une
incapacité a traiter la maladie. L’urgence est de contenir le virus a un niveau asymptotique.
Dans cet article, nous proposons des modeles déterministes décrivant le comportement
dynamique de ’infection sous 1’action d’une multi thérapie ; nous utilisons des techniques
d’analyse et de controle des systémes modélisés par un systéme d’équations différentielles
ordinaires, nous résolvons le probléme de contrdle optimal déduit des exigences d’un traite-
ment en temps limité minimisant le cotit de traitement.

Mots clés : Equations différentielles, Modeélisation, Maladies infectieuses, Controéle optimal,
Taux de reproduction de base

1. Introduction I’objet d’intenses efforts de modélisation

mathématique Plusieurs travaux et articles
Il y a longtemps les études mathématiques se sont intéressés aux interactions entre le
ont été ignorées au profit des résultats expé- traitement et le virus dans 1’organisme du
rimentaux, mais depuis le début de ce patient.

siécle, les maladies en général et les mala-
dies infectieuses, en particulier, ont fait
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Les mod¢les mathématiques sont devenus
des outils essentiels pour dans la formula-
tion des hypothéses, la suggestion de nou-
velles expérimentations ou 1’explication de
processus complexes. De nombreuses
¢tudes ont ét€ menées pour analyser les
interactions patient-traitement-infection [1-
4]. De nos jours, les modéles mathéma-
tiques sont devenus des outils essentiels
pour tester des hypothéses, suggérer des
nouveaux champs d’expérimentation et
aider a expliquer des processus complexes.
On a vu des nombreux aspects des infec-
tions, comme la biologie des agents vec-
teurs, le cycle de vie du vecteur pour les
maladies vectorielles, et les différents
moyens de controle des infections scrutés
dans tous les sens avec comme principal
résultat, une compréhension plus claire du
cycle d’évolution des infections et des
meilleurs moyens de lutte contre celles-ci.

La plupart des modeles de la littérature sont
des variantes des mod¢les déterministes du
type proie-prédateur donnés par des sys-
témes d’équations différentielles ordinaires
non-linéaires [5-13]. Avec I’évolution de
I’outil informatique, d’autres techniques de
modélisation ont été développées, il s’agit
par exemple d’utiliser 1’ordinateur pour
faire des simulations numériques a partir
des données expérimentales [14-16]. Par-
fois des termes stochastiques sont introduits
afin de rendre compte du comportement
probabiliste du processus d’évolution de
I’infection. Pour ce qui concerne la dyna-
mique de I'infection au VIH, virus respon-
sable du SIDA, la dynamique est modéli-
sée en considérant la progression en
nombre de cellules de CD4+T (cibles prin-
cipales des cellules virales dans I’organisme
de la personne infectée), des cellules de
CD4+T infectées et la population virale
sous les effets des médicaments anti-retro
viraux [17, 18, 19, 3, 16]. Entre temps, le
contrdle optimal a recu une attention parti-
culiére de la part des modélisateurs, surtout
lors qu’il faut proposer une alternative
différente a celle consistant en la prise
continue des médicaments anti-retro viraux.
L’idée principale de notre papier consiste
donc a utiliser des techniques de controles

des systémes modélisés par des équations
différentielles ordinaires afin de trouver un
controle optimal.

Notre papier est organisé comme suit : La
deuxiéme section présente un modéle qui
rend compte des interactions entre les cel-
lules de défense d’un individu infecté au
VIH et les cellules virales, les équations du
modéle sont expliquées, le modéle lui-
méme est analysé et le taux de reproduction
de base est calculé et commenté. La section
troisiéme présente le modéle avec traite-
ment, le traitement est basé sur la trithéra-
pie ; la section quatriéme traite du probléme
de contrdle optimal. Nous terminons avec
une discussion des résultats obtenus et
présentés.

2. Présentation du modéle sans
traitement

2.1. Modélisation du phénoméne

1. L’attaque virale

Lorsqu’une cellule est attaquée par le virus
VIH il s’en suit les différentes phases ci-
dessous :

» Fixation et introduction du virus
via la structure protéine « CD4. »

» La transcription inverse de I’ARN
viral en séquence ADN viral par
les transcriptases inverses.

> Intégration de I’ADN viral dans
’ADN du lymphocyte héte par
les intégrasses

» Expression de I’ARN viral en
chaines polypeptidiques.

» Clivages des chaines en protéines
virales (transcriptase inverse, pro-
téase, intégrasse) par les protéases

» Assemblages et libération des vi-
rus et destruction de la cellule.

3. Modéle sans traitement

Nous présentons dans cette section un mo-
déle de 1’évolution du virus VIH, en nous
inspirant des travaux présentés dans [20,
21], dans le sang d’un individu infecté qui
n’est soumis a aucun traitement approprié
contre le virus.
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Dans notre modéle, nous prenons en
compte les différentes populations sui-
vantes :
e Lapopulation de cellules saines de
CDA4. représentée par T
e La population de cellules infectées
latentes représentée par L
e La population de cellules infec-
tées actives représentée par |
e Lapopulation de virus libres actifs
représentée par V
e La population de virus libres inac-
tifs représentée par N
e La population cytotoxique, la ré-
ponse immunitaire représentée par
E.

Avec ces différentes populations, la dyna-
mique de 1’évolution du virus VIH dans le
sang d’un individu infecté qui n’est soumis
a aucun traitement appropri¢ contre le virus
est donnée par le systéme d’équations diffé-
rentielles ordinaires suivant :

dr T+L+1
(1— )—uTT—(l—e)leT+sl )

d max

=w(1l—e)k VT — uyL — k,I )
=1 —=w)(1 —e)kyVT + kyl — pyl —k3IE (3)
dav

=a(l=-0) =k VT —puyV “)

dL
de

di

(p2)q 4t
dac

dN
=Y mN ®

dE
P k4 ITE — ugE + s, (6)

Explication des équations

L’équation (1) modélise I’évolution dans la
population de cellules CD4.,T4 saines :
Cette population est proportionnelle au
taux de dévloppement des cellules saines
dans le sang et elle est régulée par la capa-
cit¢ maximale T,,,, de I’organisme. Pour
traduire ce phénomeéne, nous faisons appa-
raitre, comme dans le modéle de Verhulst,
un terme non-linéaire de régulation de la
population. Ces cellules meurent naturel-
lement au taux pp. Il y a aussi celles qui
sont infectées par les virus libres actifs (V).
Enfin, il y a un flux continu de cellules

saines produites par 1’organisme exprimé
par le terme de source et de fluxs;.
L’équation (2) modélise la dynamique de la
population de cellules infectées latentes
représentée par L, aprés infection (due au
contact entre celles saines T et cellules
virales infectées actives libres V), Il ya
une proportion w de cellules T infectées qui
deviennent infectées latentes ; elles meurent
de mort naturelle au taux u; et une partie
devient infectée active au taux k,
L’équation (3) modélise la population de
cellules CD4,T4 infection actives. Au taux
k>, les cellules infectées latentes deviennent
infectées actives. Les cellules infectées
actives produisent de virus et meurent au
taux u; .

L’équation (4) modélise la population de
virus libres actifs. Nous supposons que
lorsqu’une  cellule infectée active de
CD4.T4 subit une lyse (destruction par
fragmentation sous I’influence des virions,
la réplication virale est initiée et N virules
sont produites avant que la cellule hote ne
meurt, notant qu’il a un nombre de ces
virules qui meurent a chaque lyse a un taux
(de mortalité)u;. Par souci de simplifica-
tion, nous posons le paramétre a = Nu; et
a représente le nombre de virus libre par la
lyse d’une cellule multiplie par le taux de
mortalité par lyse. Le virus libre ne ’est
plus lorsqu’il infect en se greffant a une
cellule CD4,T4 saine, ceci se fait au taux
k, les cellules infectées ont tendance a
perdre leur CD4 c’est pourquoi le greffage
aune cellule déja infectée négligeable.

Le terme uyV dans (4) renseigne sur la
perte de I’infectivité virale et/ou le retrait de
I’organisme.

L’équation (6) modélise la réponse immuni-
taire produit les cellules cytotoxiques
(cellules spécialisées capables de détruire
les cellules virales) responsables de la
réponse immunitaire laquelle est propor-
tionnelle aux populations de T,I et E. Le
termeugE renseigne sur les cellules cyto-
toxiques qui meurent pour une cause autre
que suite a une infection virale, s, est le
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terme de source et de flux de cellules cyto-
toxiques dans le sang du patient.

2.3. Analyse du modéle sans traitement

2.3.1 Propriétés de base du modeéle Exis-
tence-Unicité des solutions

Le modéle ci-dessus traite de 1’évolution
de la population de cellules de CD4+, des
cellules virales et des cellules cytotoxiques,
il est donc supposé que toutes les variables
d’état T, L, LV,N et E et les paramétre du
modéle sont non négatifs pour tout le
modele d’évolution de la population de ces
cellules sous I’action du VIH sera donc
analysé dans une région convenablement
admissible obtenue comme suit :

Notant que toutes les solutions admissibles
sont uniformément bornées dans un sous

ensemble propre N de Ri soit
(T,L,I,V,N,E) € RS une solution quel-
conque du systéme (1)-(6) avec des condi-
tions initiales non négatives.

Ainsi, on a d’un c6té T(t)+ L)+
[(t) < Tppax de Pautre coté V(t) + N(t) <
Woul est le seuil maximal de virus libres
actifs et inactifs et finalement E(t) < @ le
seuil maximal de population de cellules
cytotoxiques.

Par suite, T(@)+L(@)+I1(t)+ V() +
N +EW) STy + W+ 0 =€

Ainsi, lorsque t —» o0 comme 0 < });(t) <€
alors, toutes les solutions admissibles des
composantes du systéme (1)-(6) est dans la
région :n= {(T,L,I,V,N,E) €

R$,2(6) <€} (%)

Il s’en suit de (*) que toutes les solutions
possibles du systeme (1)-(6) sont dans la
régionn.

D’ou, la régionN, d’intérét biologique, est
positivement invariante sous le flot induit
par le systéme (1)-(6).

De plus, il peut étre montré que toute solu-
tion sur le bord de solution sur le bord de N
rentre éventuellement & I’intérieur de(.
Plus encore, dans, les résultats sur
I’existence, 1’unicité et la continuité sont
vérifiées pour le systéme (1)-(6)

Donc le systéeme (1)-(6) est mathémati-
quement et biologiquement bien posé et il

est normal de considérer les dynamiques du
flot engendré par le systtme (1)-(6)
dans N.

Positivité des solutions

Il est important de noter que pour le sys-
téme (1)-(6) toutes les variables d’état
restent non-négatives pour toutt > 0. En
d’autres termes, les solutions du systéme
(1)-(6) avec des données initiales positives

resteront positives pour toutt > 0.

2.3.2 Parametres du Modeéle

Les paramétres par mm’ de sang sont pré-
sentés dans la table suivante: avec T, =

1000; I, = 0;V, =0.001; N,=0; E, =0
Paramétre et constantes Val/ jr
r = taux de dvlp des cells saines 0.03
ur = taux de mort des cells saines 0.02
u; = taux de mort des cells infectées 0.26
uy = taux de mort des cells virales 2.4
u; = taux de mort des cells cytotoxiques 0.1
k; = taux cells saines inf par le virus 24e5
k, = taux cellules saines inf 3e75
devenant actives
Tinax = Seuil maximal de 4 saines 1500
+ 4 infectées
a 1200 x
= nbre de virus libres par la lyse d'une 0.24
4x taux de mortalité par lyse
s, = terme de source et de flux 10
de cellules saines
s, = terme de source et de flux 5
de Cell cytotoxiques
ks = 4 infectées actives détruites par 2.e75
les 4 cytotoxiques
k, = production de cellules cytotoxiques l.e™>
w = proportion de cellules latentes [0;1]

Sources (références) [11, 14]

2.3.3 Equilibres et Taux de Reproduction

de baseR,,
Théoreme 1.1

1. Lemodéle (P.1) admet un équi-
libre sans maladie (DFE) enX
(T,,0,0,0,0, Ey) avec

4
(r=up)+ / (r—llT)ZJrTYJ
m

TO = 2r

ug
Tmax

ax S2
6tE0 = -
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2. Le nombre de reproduction de
base du modele (P.1) est donné
par

R,
a(l —w)k,T,

- (k, To +uy)(u; — ky + k3E)

Démonstration

Un point d’équilibre du modéle (P1) est
solution du systéme

T+L+1
T(l——)—,uTT—leT+s1 =0
Tmax
wk VT —urL—k,I =0
(1 =Wk, VT + kol — pyl — k3IE =0
al =k, VT — V. =0
al —uyN =0
Kk JTE —ugE +s, =0

Considérant qu’au point d’équilibre sans
maladie, L=1 =V = N =0, ce qui donne

4
(r-ur)+ [y
max
et

la solution Ty, = o

s Tmax

Ey=-+

U
Calcul du Taux de Reproduction de base
Ro
Suivant la notation donnée dans [22, 23] et
considérant simplement les compartiments
des infectés L et /, nous linéarisons le sys-
tétme (P1) au DFE avec L=V =N=1]=
0 etTy, E,. Réécrivons la matrice Jaco-
bienne résultante ] = F —V avec F conte-
nant les nouvelles infections nous obte-
nons :

k,0(1 — W)k, T,0 0 0
00 wk;T, 0 00
loo o 00 0
F={o0 o o000l
00 0 000
00 0 000
M 0 0 00 0
k
A R
V= —a o kTo+uy 00 0
—kyToEs 0 0 Hy 0 0
T, 1T, 0 Opgorr,
TleX Tmax 0 0 Tmax - +MT

Le taux de reproduction de base noté¢ R, est
obtenu comme rayon spectral de la matrice
—F.V~! et nous obtenons
_ a(l—w)k1T0

(ky ToHuy) (u—ky+ksEg) —

Ry

Interprétation du nombre de reproduction
de base

Nous pouvons dire simplement que pour ce

modele le paramétre R, nous donne le
nombre moyen de cellules saines infectées
(actives) par une cellule virale active libre
pendant sa période d’infectuosité. Les diffé-
rents efforts pour soulager le patient de-
vraient chercher a réduire la valeur de ce
paramétre. Nous avons aussi que lorsque

Ry>1 (une cellule virale active infecte,
pendant sa période d’infectuosité, plus
d’une cellule saine), I’infection s’installe et
s’aggrave. Le Tableau I ci-dessus nous
fournit les différentes valeurs des para-
metres utilisés dans notre modele. Ces
valeurs ont été tirées de [11, 14]

En supposant w = % , traduisant qu’une fois

infectées, la moitié de cellules infectées
devient actives, avec les valeurs de para-
métres fournies par le Tableau 1, nous

calculons Ry=4. Explications : une cellule
virale active libre infecte a elle seule 4
cellules saines lesquelles deviennent infec-
tées actives pendant toute leur période
d’infectuosité. Ceci explique, en partie, la
raison pour laquelle il faille généralement
un temps relativement long pour que la
personne infectée au VIH devienne malade
du SIDA.

3. Modzéle avec traitement

Nous présentons dans cette section, un
traitement intervenant dans 1’évolution des
populations du modele (1)-(6) le VIH est
type non commun de virus appelé un Ré-
trovirus et les médicaments développés
pour le traiter et contrer 1’action du VIH
sont connus sous le nom d’antirétrovirale
ou ARV. Le virus du SIDA mute rapide-
ment, ce qui fait de lui dextrement disposer
a développer de la résistance aux médica-
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ments. Afin de minimiser ce risque le pa-
tient infect¢ au VIH est généralement traite
avec une combinaison des ARV qui attaque
le virus sur plusieurs fronts.

Actuellement, les patients sont traités par
I’association de 2 types de médicaments
(Highly Active Anti Retroviral Treatment :
HAART) il s’agit d’un ou plusieurs inhibi-
teurs de transcriptase inverse et un inhibi-
teur de protéase associés éventuellement a
un stimulant immunitaire.

Sachant ce qui se produit lors d’une attaque
virale (voir les 6 phases) parlons a présent
de la trithérapie.

3.1 La Trithérapie

La trithérapie consiste a 1’association d’un
coté des inhibiteurs de la transcriptase
inverse, des inhibiteurs de protéase et de
I’autre de stimulant de la réponse immuni-
taire

a) Les inhibiteurs de la transcriptase
inverse (RTI: Reverse transcrip-
tase Inhibitor) Les RT/S (AZT,
3TC, ddc) bloquent le processus de
transcription ARN vers ADN. La
conséquence du blocage de ce
processus est que la cellule rede-
vient saine et le virus infectant est
détruit.

b) Les inhibiteurs de protéase (PI:
protéase Inhibitor)

Les PIs (Ritonavir, Amprenavir, darunavir)
perturbent la  production des protéines
virales. Les virules produits sont déficients.

a) La réponse immunitaire

Les lymphocytes cytoxiques sont capables
de reconnaitre et de tuer les cellules infec-
tées par le virus. Dépourvues de site CD4.,
elles ne peuvent donc pas étre détruites par
les virus leur production est stimulée par le

nombre de cellules infectées, le nombre de
cellules saines et dépend du nombre de CTI.

Le mécanisme

CTL (B)

VIRUS ACT (V)
OU VIRUS
INACT (V)

3.2. La modélisation mathématique

L’évolution du virus VIH dans le sang sous
I’action de la trithérapie est modélisée par
le systéme d’équations différentielles sui-
vantes :

La modélisation mathématique

L’évolution du virus VIH dans le sang sous
I’action de la trithérapie est modélisée par
le systéme d’équations différentielles sui-
vantes :

daT T+L+1
=7 (1—

i )—,uTT—(l—e)leT+sl

Tmax

dL
i w(1l—=e)k VT — upL — kI

dl
—=(1=w)(1 = &)k VT + kyl — ;1 — k3 IE
p2){ dt
dav
= = 1= ) = kaVT =,V
T al — puyN
dE
i k ITE — ugE + s,
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Dans ce systeme d’équations, on a les diffé-
rentes populations :

T= cellules saines de CD4.

L=cellule infectées latentes

I= cellules infectées actives

V= virus inactifs

N= réponse immunitaire

e= inhibiteurs de la transcriptase inverse
6= inhibiteurs de protéase.

Explication des équations du systeme (P2)
Le paramétre e € [0, 1] représente 1’action
des inhibiteurs de Transcriptase inverse
RTIs.

Si e =0, I’action des RTIs est supposée
nulle et nous retrouvons les équations (1),
(2) et (3) du systeme (P1).

Si e =1, l’action des RTIs est supposée
maximale et on a que les contacts entre
VetT ne débouchent jamais sur une infec-
tion des cellules de saines de 7, les RTIs
ayant réussi a bloquer totalement le pro-
cessus de transcription ARN vers ADN.

Le paramétre 6 € [0, 1] représente 1’action
des inhibiteurs de Protéase Pls.

Si 8 =0, ’action des PIs est supposée
nulle et nous retrouvons 1’équation (4) du
systeme (P1).

Si 8 =1, l’action des Pls est supposée
maximale et on a que la production des
protéines virales est perturbée et tous les
virules produits sont déficients, il s’en suit
donc qu’aucune cellule infectée active ne
survit, faute de protéines nécessaires pour
sa survie.

3.3. Analyse du Modéle avec Traitement

Comme pour le modéle sans traitement, il
est aisé de faire une analyse du modéle
avec traitement.

Théoréeme 1.2

Le nombre de reproduction de base du
modeéle (P2) est donné par

~ a(1-w)(1—e) - 0)k,T,
- (k, To +uy)(uy — ky + k3E)

0

Démonstration.

Dans le but de trouver les points d’équilibre
du modele (P.2), nous égalons a 0 le second
membre de ce systéme et de résoudre le
systéme d’équations résultant. Avec comme

valeurs initiales positivesT,etE. La preuve
se fait de maniére similaire a celle du théo-
réme 1.2. Reprenant la démonstration du
théoréme 1.1, nous obtenons le méme point
d’équilibre sans maladie (DFE) donné par

(T,,0,0,0,0, Ey)

4rs
(r—up)+ / (r—up)?+—=
Tmax

S2
+ — =

2r CL EO -
Uug

avecT, =

Tmax

Par suite, nous définissons F et V au
(DFE) comme ci-dessus, le rayon spectral
de la matrice —F.V ™! nous donne la valeur
du taux de reproduction de base R, =
a(1-w)(1—e)(1-0)k Ty

(ley To+uy) uy—kp+k3Eq) —

Remarque

Ainsi, étant donné que e,60 € [0,1] , nous
pouvons clairement voir que la trithérapie
permet de réduire la valeur de R, c'est-a-
dire le nombre moyen de cellules CD4.T
saines infectées par des virus libre actifs V.
En effet, la valeur du nombre de reproduc-
tion de base obtenue au théoréme 1.1 est
multipliée par le facteur(1 —e)(1 — ). 1l
y a donc que ce nombre est réduit dés lors
que 1’une ou I’autre des valeurs de e et / ou
6 augmente.

4. Probléme de Contrdle Optimal

Dans cette section, nous utilisons des tech-
niques d'analyse et de contrdle des systémes
modélisés par un systéme d'équations diffé-
rentielles (le mode¢le utilisé est celui décri-
vant le comportement dynamique de l'infec-
tion sous l'action d'une multi thérapie décrit
a la section précédente), nous rechercherons
finalement un contréle (thérapeutique) a
I'horizon fini (temps limité¢) qui minimise
un colit tenant compte des objectifs et des
contraintes imposées [17, 18, 19, 24]
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Nous commengons par présenter le pro-
bléme de contrdle optimal.

Ensuite, nous donnons le résultat principal
sous forme d’un théoréme que nous démon-
trons en détails. Nous cloturons cette sec-
tion par une conclusion sur le probléme de
controle optimal.

4.1. Présentation du probleme de contréle
optimal

L'utilisation des thérapies associant 2 ou
plusieurs types de médicaments tels que
décrits au début du chapitre précédent pro-
voque a long terme (= 500 jours), des effets
secondaires indésirables dont une intolé-
rance croissante de l'organisme des patients,
une mutation du virus et donc une baisse de
I'efficacité voire une incapacité a traiter la
maladie.

L'urgence est de contenir le virus a un
niveau asymptomatique.

Il y a donc nécessité de trouver un traite-
ment thérapeutique qui ménage la tolérance
du patient (faible dose) et de durée réduite
pour éviter la résistance virale (traitement =
400 jours en moyenne).

Le probléme est de trouver une posologie
satisfaisant les objectifs suivants:
- amener le patient & un état contrdlable
par son propre systéme immunitaire,
- limiter le traitement dans le temps,
- administrer au patient les doses les
plus faibles possibles.

L'évolution du virus VIH dans le sang sous
I'action de la trithérapie est modélisée par le
systtme d'équations différentielles sui-
vantes:

d_T =T (1 _ T+L+1

= = w(l - e)kyVT — urL —kyl
dl

de

= a(1-0) =k VT — )V

dN
P al — ﬂVN
dE

; = k4_ITE _‘U.EE + Sy

) — T — (1= )k, VT +5,

A = (1=w)(A = ks VT + kyl — ;1 — k3 IE

Le contrdle ici est représenté par le traite-
ment et symbolisé par les inhibiteurs e et
0, il représente l'effet qu'a le traitement sur
la production virale et l'infectuosité des
virus.

Nous traduisons par ces relations le méca-
nisme selon lequel d'un coté, les RTIs e
bloquent le processus de transcription ARN
vers ADN dans les cellules infectées, et de
l'autre, les PIs 8 perturbent la production
des protéines virales entrainant comme
conséquence que les virules produits sont
déficients. Tous ces faits sont exprimés et
traduits par le systéme d'équations différen-
tielles ordinaires ci-dessus.

Nous nous plagons dans la situation ou

R, défini par le théoréme 1.2 est supérieur
a 1, ainsi nous ne sommes pas dans la ré-
gion de stabilit¢ de l'équilibre sain (sans
virus, le DFE) et il y a nécessité d'appliquer
un traitement afin de contrdler I'épidémie.
Le probléme de controle optimal consiste a
trouver un contréle minimisant la fonction-
nelle J (e, B)définie par :

1
J(e,8) = 5VA(T)

T ra B .
172 2
+jo(2v +2V>dt
€ T
— 2
+zfo(e

+63dt (4.1)
L'objectif ici est non seulement de réduire
les virus actifs V au bout d'un temps T
mais aussi pendant [0; T] en agissant sur la
vitesse de développement viral et en méme
temps en modérant le colit de contrdle
(traitement) donné par le couple (e, 8).

Le premier terme de cette fonctionnelle
modélise la population virale V' au temps
final 7 le deuxiéme terme modélise la
charge virale et la vitesse de développement
viral accumulées depuis 1'instant initial Ty =
0 jusqu'a l'instant final T tandis que le
troisiéme terme modélise le cout de traite-
ment cumulé.

Ce traitement sur base de l'administration
des inhibiteurs e et 8 est supposé étre fonc-
tion du temps.
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Le choix des paramétres positifse, aetfs
dépend d'une évaluation subjective de I'im-
portance relative accordée par le staff cli-
nique entre d'un coté la réduction de la
charge virale du patient, la vitesse de déve-
loppement de la population virale et du coit
du traitement, entendez les effets désa-
gréables du traitement sur le patient.

Nous cherchons alors le contrdle
(e*,0") qui minimise J(e, 8) sur A

Ou A={(e, 6), 0<e6 <1} avec ¢,0
des fonctions continues par morceaux sur
[0,T]

4.2 Existence et Caractérisation du con-
trole optimal

Proposition 4.2. Considérons le probleme
de controle associé au probleme (P.2). 1l

existe un contréle (e*,0") et une solution
correspondante (T*,L*,1*,V*,N*, E*) qui
minimise J(e, 8)surA telque

ming, gye4) (e,6) = J(e",0%)
Démonstration

Nous devons vérifier les conditions sui-
vantes :

1. L’ensemble des controles et
des solutions correspondantes
est non vide ;

2. L’ensemble des controles A
est convexe et fermé dans L’
0;1);

3. Le champ de vecteurs du sys-
téme d’état est borné par une
fonction linéaire du contréle ;

4. L’intégrande de la fonction
colit est convexe ;

5. 1l existe des constantes ¢, c,>
0 et telles que I’intégrande de
la fonction objectif soit bornée

B
par (cilel* + c,lel*) /2 -

)
Nous vérifions que e =8 =0 est un con-
trole dansA et (T*, L, 1",V*,N*, E*) es-
tune solution correspondant au contrdle
e =0 =0, ainsi, I’ensemble de contrdles

et des solutions correspondantes est non
vide, ce qui vérifie la condition 1.
L’ensemble A est borné par définition, donc
la condition 2 est vérifiée.

Le champ de vecteurs du systéme (P2)
vérifie la condition 3 puisqu’il est borné
(Voir Propriétés de base 2.3.1 avec
e=60=1).

Il existe ¢y, c,> 1

12 T(E 2 E'Z)
2V(T)+f0 “VE SV ) de +

SJy (P + 09)dr = (cylel +

vérifiant

B

c,lel?) f _ ¢, puisque la variable d’état
V est bornée, pareil poureetd. Nous en
déduisons alors I’existence d’un controle
optimal (e*,0%) qui minimise la fonction
coit J(e, 6).

En résumé, pour ce probléme de minimisa-
tion, la condition de convexité nécessaire
pour la fonctionnelle J en ces paramétres
V, eetf (principalement aux 2 derniéres) est
vérifiée. Le membre de droite du systeme
d’équations d’état (P2) est linéairement
borné a cause du fait qu’a priori la variable
T est bornée, ce qui implique que les autres
variables d’état sont aussi bornées. Le faite
d’étre borné et que ces bornes sont finies
garantissent la compacité requise pour
I’existence du contrdle optimal. La condi-

tion initiale étant V(0) =V,
Assuré de I’existence de ce contrdle opti-
mal, on peut alors utiliser le Principe de

Maximum de Pontryaguin pour résoudre ce
probléme de contrdle optimal.

Théoréme 4.3

Un contréle optimal(e”, 0" )du systéme
d'optimalité (P.2) ci-dessus qui minimise la
fonction objectif (4.1) est caractérisé par

o = max {([—,11 Y wizz - Ag)]klw)t 0
. a[Ay — As) —a BV (kT +uy) —alll
6" (t) = max {(——— Tk — )*,03
ou la notation
= {y, siy >0
0, siy <0
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Démonstration

Assuré¢ de 1'existence de ce controle optimal
(voir théoréme 4.2 ci dessus), on peut alors
utiliser le Principe de Maximum (mini-
mum) de Pontryagin [25] pour résoudre et
caractériser ce probléme de contréle opti-
mal.

Résolution du probleme de contréle optimal

Soient 106, 2,(), 250, A,0),
As(t) etdg(t) les multiplicateurs de La-
grange associés aux équations d'état (P2) Si
w,(t), w,(t),ws(t)etw,(t) sont les
multiplicateurs (variables) de pénalité atta-
chés au controlee, 8, le Lagrangien pour ce
probléme d'optimisation est 1'intégrant de la
fonctionnelle ] associé au membre de droite
des équations d'état (4.1) a travers les va-
riables adjointes aux quelles on ajoute les
variables de pénalité attachées aux con-
traintes sur le contrdle, on a alors l'expres-
sion du Lagrangien:
L (T,L,I, V,N,E,e,0, ,11,,12,,13,14,15) _
1Ay W1, W2, W3, Wy

1 a B . £
2 2 2 2 2
2V +2V +2V +2(e +6?)
T+L+1
fafrr (1= TEEE
Tmax
_HTT_ (1 - e)k]_VT
+sl]

w1 — e)ky VT — purL — kol [+23 [(1 =
w)(1 — )k, VT + kyl — I — k3IE |

+24[a(l — )] — k VT — uy V] + Aglal —
tyNT+ A6[k4ITE — pgE + s,] + wy (£)e(t)
+w, () (1 —e(t)) + ws (£)8(t) + w, ()(1—
() (43)

avec w;(t) =0,i = 1, 2, 3, 4 des multiplica-
teurs de pénalité.

Ces multiplicateurs de pénalité doivent
satisfaire les conditions suivantes :

Wl(t)e(t) =0, Wz(t)(l - e(t))
= 0,w;(1)6(t)
=0 etw, (t)(l
-0()) =0
De plus, les équations différentielles qui
gouvernent les variables adjointes sont

obtenues par différentiation du lagrangien
(selon le Principe de Minimum):

rdi, aL
dt  dT
da, L
dt oL
dls L
) Qe — (4.4)
dt v
di, L
dt  ON
dAs aL
\dt  0E

Pour ces variables adjointes, on ad; (T)=0
pour i=1,2,...,6; ce sont la les conditions de
transversalité appelées aussi parfois condi-
tions de mariage. La valeur de la variable
controle optimal peut étre caractérisée a
chaque instantt € [0,T] en notant qu'elle
minimise le Lagrangien (Principe du Mini-
mum de Pontryagin) et c'est pourquoi, cette
variable controle optimal devra satisfaire la

condition nécessaire
oL

— = 0avec @ = (e",0")

o0

ou @ = (e*, 0" )est la paire optimale, la
dose optimale de traitement.

Etant donné que:

L=
1 a B . €
Zy2zay2y Py S,z 2
2V +2V +2V +2(e +62)
T+L+1
Fafpr(1-TEEE
Tmax
—urT—(1—e)k, VT
+51]

w1 — &)k, VT — purL — k1 1425 [(1 —
W)(1 — &)k VT + kyl — gl — k3IE ]
+Aqla(l = O)I — k, VT — py V] + As[al —
ty NT+ Ag[k4ITE — pgE + s,] + wy (£)e(t)
+w, (0)(1 —e(t)) + w3 (£)(t) + w,(O)(1 -
(1))

La différentielle de L par rapport a e et par
rapport a 6 donne respectivement:

aL
e

— (1 = W)k VT + w,
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oL
i Bla(1 = 6)I — k,VT — u,V](~al

+ €0 — A,al + Asal
+wz —w,)

Par suite, Onaen (e = €*,0 = 6%),
e+ Ak VT — ,wk, VT
— A1 —w)k, VT + wy
-w, =0
Bla(l — O)I — k, VT

—u, V](—al + €6
—Aal + Agal +wy
—w,) =0

D'ou on tire:
. _ [—ﬂ.l+ﬂ.3+W(ﬂ.2—ﬂ.3)]k1VT+W2(t)—W1(t)

e

€
a[/14—/15)1—a,8[V(k1T+uV)—a1]I+W4 (t)—w3(t)

*

[i’a212+s

Caractérisation du contréle optimal

Dans le but de caractériser complétement le
controle optimal (e, 8*)considérons les 5
cas suivants:
- Cas I: Pour ttelque 0 <
e*(t),0*(t) <1

On a:wl(t) = Wz(t) = W3(t) =
W4_(t) =0
D'ou
e’(t) = .
a[Ay — A —a BV (kT +uy) —alll
pa?l? + ¢

Iy VT[4 + A3 + w(d, — 43)]

0°(t) =

- Cas II
*(t)=1

Pour ttelquee*(t) =

On a: Wl(t) = w3(t) =0
Par suite,
() = [ + A3 + w(A, — A3) ]k VT <1

£
e a[A, — ) —a B[V(k T +uy) —all]l
(1) = Ba2l? + ¢ <1

- Cas IV: Pour ttelquee*(t) =0,
*(t) =1

On a: Wz(t) = W3(t) =0

Par suite,
_ [=4 + A3+ w(A, — 23)]|k VT >0

e’(t) -

oAl = ) —a V(T +uy) —alll
'(®) = Bazl? +¢ <1

- Cas V: Pour ttelquee*(t) =
16*(t)=0

On a: Wl(t) = W4_(t) =0
Par suite,

e (0) = [=4 + 23 + wi)lz — A3)k VT -0

e a[dy — A5) —a B[V(k,T +uy) —al]l
'(0) = Ba?l? + ¢ >0

Les autres cas possibles se raménent a des
considérations déja traitées ci-haut.

Combinant les cas traités ci-haut et aux-
quels cas se rameénent tous les autres cas
non traités ici, le contréle optimal peut donc
&tre caractérisé comme suit:

o) = max (T A2 ¥ Wl — VT,
: a[Ay —A5)l —a B[V (ki T +uy) —al]l
0*(t) = max {(———= P +1S v ol

y, siy >0

Avec  y*= {0, siy <0 N
Ainsi, par exemple, pour certaines valeurs
de t,-2,() + 23(0) + w(2,@®) — A3(0)) > 0
Alors e*(t) # 0, ceci entraine que pour ces
valeurs, a ces instants, on a 0 < e*(¢) <

1.En termes clairs, pour ces valeurs ou
mieux en ces instants, un traitement a base
d’inhibiteurs de transcriptase inverse (RTIs)
doit étre administré au patient afin de blo-
quer le processus de transcription inverse
d’ARN vers ADN. De méme, pour cer-
taines valeurs de t, on a que 0*(t) > 0et il

faut pour ces valeurs, administrer au patient
des inhibiteurs d’intrégras e.

Il est important de souligner ici que, l'on
peut aussi traiter le cas (e*,0") <N
avec N < 1 traduisant le fait que le traite-

ment ne peut pas stopper complétement la
reproduction virale.
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Conclusion

Dans cet article, nous nous sommes livrés a
modéliser une infection au VIH ; d’abord
en expliquant la dynamique de I’évolution
du virus VIH dans le sang. Ensuite, nous
avons en considérer une trithérapie contre
cette infection comme controle de 1'infec-
tion. Une analyse mathématique sommaire
de ces modéles a été faite. Un résultat sur le

taux de reproduction de base R, est pré-
senté et démontré.

Il est un fait que I’utilisation des thérapies
associant 2 ou plusieurs types de médica-
ments (c’est le cas de la Trithérapie contre
le VIH) provoque a long terme, des effets
secondaires indésirables dont une intolé-
rance croissante de l’organisme des pa-
tients, une mutation du virus et donc une
baisse de I’efficacité voire une incapacité a
traiter le maladie ; il ya donc nécessité de
trouver un traitement thérapeutique qui
ménage la tolérance du patient(faible dose)
et de durée réduite pour éviter la résistance
virale. Ces exigences nous ont amené a
poser ce probléme mathématiquement
comme un probléme de controle optimal,
probléme que nous résolvons en nous ser-
vant du Principe de Maximum de Pontrya-
gin pour caractériser le contrdle optimal
dont I'existence a ét¢ établie. Un intéressant
résultat comportant une caractérisation
explicite du controle optimal est obtenu,
présenté, démontré et expliqué.
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