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Abstract 
Currently the patients infected with the VIH are treated by the association of 2 types of drugs 
(Highly Activates AntiRetroviral Treatment, HAART); they are one or more inhibitors of 
transcriptase opposite and stimulative immunizing of protease possibly associated with an 
immunizing stimulant. The use of these long-term therapies (500 days) causes: undesirable side-effects like an increasing intolerance of the patient’s body, a change of the virus thus a 
fall of the effectiveness even an incapacity to treat the disease. The urgency is to contain the virus on an asymptotic level. In this article, we propose  deterministic models describing the 
dynamic behavior of the infection under the action of a multi therapy; we use techniques of 
analysis and of control for  systems modelled by a system of ordinary differential equations, 
we solve the optimal control  problem and  deduced from the requirements  a treatment in 
limited time minimizing the cost of treatment. 
Keywords: Differential equations, Modeling, Infectious Diseases, Optimal control, Basic     
Reproduction number 
Résumé  
Actuellement les patients infectés au VIH sont traités par l’association de 2 types  de médi-
caments (Highly active  anti rétroviral traitement, HAART) ; il s’agit d’un ou plusieurs  
inhibiteurs  de transcriptase inverse et une stimulante immunitaire  de protéase associée 
éventuellement à un stimulant immunitaire. L’utilisation de ces thérapies  à long terme ( 500 ) provoque : Des effets secondaires indésirables dont une intolérance croissante 
de l’organisme des malades. Une mutation du virus donc une baisse de l’efficacité  voire une 
incapacité à traiter la maladie. L’urgence est de contenir le virus à un niveau asymptotique.  Dans cet article, nous proposons des modèles   déterministes  décrivant le comportement 
dynamique de l’infection sous l’action d’une multi thérapie ; nous utilisons des techniques 
d’analyse et de contrôle des systèmes modélisés par un système d’équations différentielles 
ordinaires, nous résolvons le problème de contrôle optimal déduit des exigences d’un traite-ment  en temps limité minimisant le coût de traitement.  
Mots clés : Equations différentielles, Modélisation, Maladies infectieuses, Contrôle optimal, 
Taux de reproduction de base 

1. Introduction 
Il y a longtemps les études mathématiques ont été ignorées au profit des résultats expé-
rimentaux, mais depuis le début de ce 
siècle,  les maladies en général et les mala-
dies infectieuses, en particulier, ont fait 

l’objet d’intenses efforts de modélisation 
mathématique Plusieurs travaux et articles se sont intéressés aux interactions entre le 
traitement et le virus dans l’organisme du 
patient. 
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 Les modèles mathématiques sont devenus 
des outils essentiels pour dans la formula-
tion des hypothèses, la suggestion de nou-
velles expérimentations ou l’explication de processus complexes. De nombreuses 
études  ont été menées pour analyser les 
interactions patient-traitement-infection [1-
4]. De nos jours, les modèles mathéma-
tiques sont devenus des outils essentiels 
pour tester des hypothèses, suggérer des 
nouveaux champs d’expérimentation et aider à expliquer des processus complexes. 
On a vu des nombreux aspects des infec-tions, comme la biologie des agents vec-
teurs, le cycle de vie du vecteur pour les 
maladies vectorielles, et les différents 
moyens de contrôle des infections scrutés 
dans tous les sens avec comme principal 
résultat, une compréhension plus claire du 
cycle d’évolution des infections et des 
meilleurs moyens de lutte contre celles-ci.  
La plupart des modèles de la littérature sont des variantes des modèles déterministes du type proie-prédateur donnés par des sys-
tèmes d’équations différentielles ordinaires 
non-linéaires [5-13]. Avec l’évolution de 
l’outil informatique, d’autres techniques de 
modélisation ont été développées, il s’agit 
par exemple d’utiliser l’ordinateur pour 
faire des simulations numériques à partir 
des données expérimentales [14-16]. Par-
fois des termes stochastiques sont introduits 
afin de rendre compte du comportement probabiliste du processus d’évolution de l’infection. Pour ce qui concerne la dyna-
mique de l’infection au VIH, virus respon-
sable du SIDA,  la dynamique est modéli-
sée en considérant la progression en 
nombre de cellules de CD4+T (cibles prin-
cipales des cellules virales dans l’organisme 
de la personne infectée), des cellules  de 
CD4+T infectées et la population virale sous les effets des médicaments anti-retro 
viraux [17, 18, 19, 3, 16]. Entre temps, le 
contrôle optimal a reçu une attention parti-culière de la part des modélisateurs, surtout 
lors qu’il faut proposer une alternative 
différente à celle consistant en la prise 
continue des médicaments anti-retro viraux. 
L’idée principale de notre papier consiste 
donc à utiliser des techniques de contrôles 

des systèmes modélisés par des équations 
différentielles ordinaires afin de trouver un 
contrôle optimal.  
Notre papier est organisé comme suit : La 
deuxième section présente un modèle qui 
rend compte des interactions entre les cel-
lules de défense d’un individu infecté  au 
VIH et les cellules virales, les équations du 
modèle sont expliquées, le modèle lui-
même est analysé et le taux de reproduction de base est calculé et commenté. La section troisième présente le modèle avec traite-
ment, le traitement est  basé  sur la trithéra-
pie ; la section quatrième traite du problème 
de contrôle optimal. Nous terminons avec 
une discussion des résultats obtenus et 
présentés.
2. Présentation du modèle sans 

traitement 
2.1. Modélisation du phénomène  
1. L’attaque virale  
 Lorsqu’une cellule est attaquée par le virus 
VIH il s’en suit les différentes phases ci-
dessous : Fixation et introduction du virus 

via la structure protéine « CD4+ »La transcription inverse de l’ARN 
viral en séquence ADN  viral par 
les  transcriptases inverses. 
Intégration de l’ADN viral  dans 
l’ADN  du  lymphocyte hôte par 
les intégrasses 
Expression de l’ARN viral en 
chaines polypeptidiques. 
Clivages des chaines en  protéines 
virales (transcriptase inverse, pro-téase, intégrasse) par les protéases 
Assemblages et libération des vi-
rus et destruction  de la cellule. 

3. Modèle sans traitement  
Nous présentons dans cette section un mo-
dèle de  l’évolution du virus VIH, en nous 
inspirant des travaux présentés dans [20, 
21],   dans le sang d’un individu infecté qui n’est soumis à aucun traitement approprié contre le virus. 
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Dans notre modèle, nous prenons en 
compte les différentes populations sui-
vantes : 

La population de cellules saines de CD4+ représentée par T 
La population de cellules infectées 
latentes représentée par L 
La population   de cellules infec-
tées  actives représentée par I 
La population de virus libres actifs 
représentée par V 
La population de virus libres inac-
tifs  représentée par  N 
La population cytotoxique, la ré-ponse immunitaire représentée par 
E. 

Avec ces différentes populations, la dyna-
mique de  l’évolution du virus VIH  dans le 
sang d’un individu infecté qui n’est soumis 
à aucun traitement approprié contre le virus 
est donnée par le système d’équations diffé-
rentielles ordinaires  suivant : 

( 2)

= + + (1 ) + (1)                                    
= (1 )            (2)                                                    
= ( )(1 ) +    (3)
= (1 )             (4)                                                          
=             (5)                                                                                         

= +              (6)                                                                   

Explication des équations 
L’équation (1) modélise l’évolution dans la  population de cellules  CD4+T4  saines : 
Cette population est proportionnelle au  
taux de dévloppement des cellules saines 
dans le sang et elle est régulée par la capa-
cité maximale   de l’organisme. Pour 
traduire ce phénomène, nous faisons appa-
raître, comme dans le modèle de Verhulst, un terme non-linéaire de régulation de la population.  Ces cellules meurent naturel-
lement au taux .  Il  y  a  aussi  celles  qui  
sont infectées par les virus libres actifs (V). 
Enfin, il y a un flux continu de cellules 

saines produites  par l’organisme exprimé 
par le terme de source et de fluxs .
L’équation (2) modélise la dynamique de la population  de cellules infectées latentes 
représentée par L, après infection (due au contact entre celles saines T et cellules 
virales   infectées  actives  libres  V),   Il  ya  
une proportion  de cellules  infectées qui 
deviennent infectées latentes ; elles meurent 
de mort naturelle au taux  et une partie 
devient infectée active au taux 
L’équation (3) modélise la population  de cellules  CD4+T4  infection actives. Au taux  
k2, les cellules infectées latentes deviennent 
infectées actives. Les cellules infectées 
actives produisent de virus et meurent au 
taux  .
L’équation (4) modélise la population de 
virus libres  actifs. Nous supposons que 
lorsqu’une  cellule infectée  active de 
CD4+T4 subit une lyse (destruction par 
fragmentation sous l’influence des virions, la réplication virale est initiée et N virules 
sont produites avant  que la cellule hôte ne meurt, notant qu’il a un nombre de ces 
virules  qui meurent à chaque lyse à un taux 
(de mortalité) . Par souci de simplifica-
tion,  nous posons le paramètre =  et  
a représente le nombre de virus libre par la 
lyse d’une cellule multiplie par le taux de 
mortalité par lyse.  Le virus libre ne l’est plus lorsqu’il infect en se greffant à une 
cellule  CD4+T4 saine, ceci se fait au taux 

  les cellules infectées ont tendance à perdre leur CD4 c’est pourquoi le greffage 
à une cellule  déjà infectée négligeable. 
Le terme  dans (4)  renseigne sur la 
perte de l’infectivité virale et/ou le retrait de 
l’organisme. 
L’équation (6) modélise la réponse immuni-taire  produit  les cellules cytotoxiques 
(cellules spécialisées capables de détruire 
les cellules virales)  responsables de la 
réponse immunitaire laquelle  est propor-tionnelle aux populations de T,I et E. Le 
terme  renseigne sur les cellules cyto-
toxiques qui meurent pour une cause autre 
que suite à une infection virale,  est le 
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terme de source et de flux de cellules cyto-
toxiques dans le sang du patient. 
2.3. Analyse du modèle sans traitement 
2.3.1 Propriétés de base du modèle Exis-

tence-Unicité des solutions 
Le modèle ci-dessus  traite de l’évolution 
de la population de cellules de CD4+, des 
cellules virales et des cellules cytotoxiques, 
il est donc supposé que toutes les variables 
d’état T, L, I,V,N  et E et les paramètre du 
modèle sont non négatifs pour tout   le modèle d’évolution de la population de ces cellules  sous  l’action  du  VIH  sera    donc  
analysé dans une région convenablement 
admissible obtenue comme suit : 
Notant que toutes les solutions admissibles 
sont uniformément bornées dans un sous 
ensemble propre   de +6     soit  
 ( , , , , ,   une solution quel-conque du système (1)-(6) avec  des condi-
tions initiales non négatives. 
Ainsi,  on  a  d’un  côté    ( ) + ( ) +(  de  l’autre côté ( ) + ( )

où  est  le  seuil  maximal  de virus  libres  
actifs et inactifs  et finalement (   le 
seuil  maximal de population de  cellules 
cytotoxiques. 
 Par suite, ( ) + ( ) + ( ) + ( ) +( ) + ( ) +
Ainsi, lorsque   comme (
alors, toutes les solutions admissibles des composantes du système (1)-(6) est dans la 
région : = {( , , , , , )

, ( } (*) Il s’en suit de (*) que toutes les solutions 
possibles du système (1)-(6) sont dans la 
région .
D’où, la région , d’intérêt biologique, est 
positivement invariante sous le flot induit 
par le système (1)-(6). 
De plus, il peut être montré  que toute solu-
tion sur le bord de solution sur le bord de 
rentre éventuellement à l’intérieur  de .
Plus encore, dans , les résultats sur 
l’existence, l’unicité et la continuité sont 
vérifiées pour le système (1)-(6) 
 Donc le système (1)-(6) est  mathémati-
quement et biologiquement  bien posé et il 

est normal de considérer les dynamiques du flot engendré  par le système (1)-(6) 
dans .
Positivité des solutions 
Il est important de noter que pour le sys-
tème (1)-(6)  toutes les variables d’état 
restent  non-négatives pour  tout > 0. En 
d’autres termes, les solutions  du système 
(1)-(6) avec des données initiales positives 
resteront positives pour  tout > 0.
2.3.2 Paramètres du Modèle 
Les paramètres par mm3 de  sang  sont  pré-
sentés dans la table suivante : avec =
1000; = 0; = 0.001; = 0 ;  = 0
Paramètre et constantes  Val/ jr 

= 0.03 
= 0.02 

= é 0.26 
= 2.4 

= 0.1 
= 2.4

= 3
= 4+ 4 é 1500

= 4 é
1200 x 

0.24 
= 10 
= 5

= 4 é é4 2.
= 1.

= [0; 1]
Sources (références) [11, 14] 
2.3.3 Equilibres et Taux de Reproduction 
de base
Théorème 1.1 1. Le modèle (P.1) admet un équi-

libre sans maladie (DFE) en 0 =
( 0 , 0, 0, 0,0, 0) avec  

0 = ( )+ ( )2+ 4 1
2 et 0 = 2
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2. Le nombre de reproduction de 
base du modèle (P.1) est donné 
par

0
= (1 ) 1 0

( 1 0 + )( 2 + 3 0)
Démonstration 
Un point d’équilibre du modèle (P1) est 
solution du système 

+ + + = 0        
   = 0                                          

( ) +  = 0                    
   = 0                                              

     = 0                                                       
+   = 0                                                    

Considérant qu’au point d’équilibre sans 
maladie, L= = = = 0 , ce qui donne 
la solution 0 = ( )+ ( )2+ 4 1

2   et   
0 = 2

Calcul du Taux de Reproduction de base 

Suivant la notation donnée dans  [22, 23] et considérant simplement les compartiments 
des infectés L et I, nous linéarisons le sys-
tème (P1) au DFE  avec = = = =0 et , . Réécrivons la matrice Jaco-
bienne résultante =  avec  conte-
nant les nouvelles infections nous obte-nons : 

=
00000

000000

(1 )
0000

000000

000000

000000
et 

=

0
000

00+
000

00
0
00

0000
0

000002 +

Le taux de reproduction de base noté  0 est 
obtenu comme rayon spectral de la matrice .  et nous obtenons  

0 = (1 ) 1 0
( 1 0+ )( 2+ 3 0) .

Interprétation du nombre de reproduction 
de base  
Nous  pouvons dire simplement que pour ce  
modèle le paramètre 0 nous donne le 
nombre moyen de cellules saines  infectées 
(actives) par une cellule virale active libre 
pendant sa période d’infectuosité. Les diffé-rents efforts pour soulager le patient de-
vraient chercher à réduire la valeur de ce 
paramètre. Nous avons aussi que lorsque 

0>1 (une cellule virale active infecte,  
pendant sa période d’infectuosité,  plus 
d’une cellule saine), l’infection  s’installe et 
s’aggrave.  Le Tableau 1 ci-dessus nous  
fournit  les différentes valeurs des para-
mètres utilisés dans notre modèle. Ces 
valeurs ont été tirées de [11, 14] 
En supposant =   , traduisant qu’une fois 
infectées, la moitié de cellules infectées 
devient  actives, avec les valeurs de para-
mètres fournies par le Tableau 1, nous 
calculons 0=4. Explications : une cellule 
virale active libre infecte à elle seule 4 
cellules saines lesquelles deviennent infec-
tées  actives  pendant toute leur période 
d’infectuosité. Ceci explique, en partie,  la 
raison  pour laquelle il faille généralement un temps  relativement long pour que la 
personne infectée au VIH devienne malade 
du SIDA. 
3. Modèle avec traitement  
Nous présentons dans cette section, un 
traitement intervenant dans l’évolution des 
populations du modèle (1)-(6) le VIH est 
type non commun de virus appelé un Ré-trovirus  et les médicaments développés 
pour  le traiter et contrer  l’action du VIH 
sont connus sous le nom d’antirétrovirale 
ou ARV. Le virus du  SIDA mute  rapide-
ment, ce qui fait  de lui dextrement disposer 
à développer de la résistance aux médica-
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ments. Afin de minimiser ce risque le pa-
tient infecté au VIH est généralement traite  
avec une combinaison des ARV qui attaque 
le virus sur plusieurs fronts. 
Actuellement, les patients sont traités par l’association de 2 types de médicaments 
(Highly Active Anti Retroviral Treatment : 
HAART) il s’agit d’un ou plusieurs inhibi-
teurs de transcriptase inverse et un inhibi-
teur de protéase  associés éventuellement à 
un stimulant immunitaire. 
Sachant ce qui se produit lors d’une attaque 
virale (voir les 6 phases) parlons à présent de la trithérapie. 
3.1 La Trithérapie  
La trithérapie consiste à l’association d’un 
côté des inhibiteurs de la transcriptase 
inverse, des inhibiteurs de protéase et de 
l’autre de stimulant de la réponse immuni-
taire 

a) Les inhibiteurs de la transcriptase 
inverse (RTI : Reverse transcrip-tase  Inhibitor) Les RT/S (AZT, 
3TC, ddc) bloquent le processus de 
transcription   ARN vers  ADN.  La 
conséquence du blocage  de ce 
processus est que la cellule rede-
vient  saine et le virus infectant est détruit. 

b) Les inhibiteurs de protéase  (PI : 
protéase Inhibitor) 

Les  PIs (Ritonavir, Amprenavir, darunavir) 
perturbent la  production des protéines 
virales. Les virules produits sont déficients. 

a) La réponse immunitaire  
Les  lymphocytes cytoxiques sont capables 
de reconnaître et de tuer  les cellules infec-tées par le virus. Dépourvues  de site CD4+,elles ne peuvent  donc pas être détruites par 
les virus leur production est stimulée par le 

nombre de cellules infectées, le nombre de cellules saines et dépend du nombre de CTl. 
Le mécanisme 

3.2. La modélisation mathématique  
L’évolution du virus VIH dans le sang sous 
l’action de la trithérapie est modélisée par 
le système d’équations différentielles sui-vantes : 
La modélisation mathématique  
L’évolution du virus VIH dans le sang sous 
l’action de la trithérapie est modélisée par 
le système d’équations différentielles sui-
vantes :

2)

= + + (1 ) +
= (1 )

= ( )(1 ) +
= (1 )

=
= +

CELLSSAINES (T) 
R CELL INF LATENTES (L) 

CELL INF ACTIVES (I)

VIRUS ACT (V) OU VIRUSINACT (N) 
CTL (E) 
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Dans ce système d’équations, on a les diffé-
rentes populations : 
T= cellules saines de CD4+L=cellule infectées latentes  I= cellules infectées actives  
V= virus inactifs 
N= réponse immunitaire  
e= inhibiteurs  de la transcriptase inverse  

= inhibiteurs de protéase. 
Explication des équations du système (P2) 
Le paramètre [0, 1] représente l’action 
des inhibiteurs de Transcriptase inverse  RTIs. 
Si = 0, l’action des RTIs est supposée 
nulle et nous retrouvons les équations (1), 
(2) et (3) du système (P1). 
Si = 1, l’action des RTIs est supposée 
maximale  et  on  a  que  les  contacts   entre   et  ne débouchent jamais sur une infec-
tion des cellules de saines de T, les RTIs 
ayant réussi à bloquer  totalement  le pro-
cessus de transcription ARN vers ADN.
Le paramètre [0, 1] représente l’action 
des inhibiteurs de Protéase  PIs. 
Si = 0, l’action des PIs est supposée 
nulle et nous retrouvons l’équation (4) du 
système (P1). 
Si = 1, l’action des PIs est supposée maximale  et  on  a  que  la  production  des  
protéines virales est perturbée et tous les 
virules produits sont déficients, il s’en suit donc qu’aucune cellule infectée active ne 
survit, faute de protéines nécessaires pour 
sa survie. 
3.3. Analyse du Modèle avec Traitement  
Comme pour le modèle sans traitement, il 
est  aisé de faire  une analyse du modèle 
avec traitement.  
Théorème 1.2 
Le nombre de reproduction de base du 
modèle (P2) est donné par  

0 = ( )( )(1 ) 1 0
( 1 0 + )( 2 + 3 0)

Démonstration. 
Dans le but de trouver les points d’équilibre 
du modèle (P.2), nous égalons à 0 le second membre de ce système et de résoudre le 
système d’équations résultant. Avec comme 
valeurs initiales positives 0 0. La preuve 
se fait de manière similaire à celle du théo-
rème 1.2. Reprenant la démonstration du théorème 1.1, nous obtenons le même point 
d’équilibre sans maladie (DFE) donné par  
( , 0, 0, 0,0, ) avec 0 =
( )+ ( )2+ 4 1

2 et 0 = 2

Par suite, nous définissons F et V au 
(DFE) comme ci-dessus, le rayon spectral 
de la matrice .  nous donne la valeur 
du taux de reproduction de base  0 =

( )( )(1 ) 1 0
( 1 0+ )( 2+ 3 0) .
Remarque 
Ainsi, étant donné que   , [0,1] , nous  pouvons clairement voir que la trithérapie 
permet  de réduire la valeur de R0  c'est-à-
dire  le nombre moyen  de cellules  CD4+T
saines infectées par des virus libre actifs V.
En effet, la valeur du nombre de reproduc-
tion de base obtenue au théorème 1.1 est 
multipliée par le facteur( )(1 ). Il 
y a donc que  ce nombre est réduit dés lors 
que l’une ou l’autre des valeurs de e et / ou 

 augmente.  
4. Problème de Contrôle Optimal  
Dans cette section, nous utilisons des tech-
niques d'analyse et de contrôle des systèmes 
modélisés par un système d'équations diffé-
rentielles (le modèle utilisé est celui décri-
vant le comportement dynamique de l'infec-
tion sous l'action d'une multi thérapie décrit à la section précédente), nous rechercherons 
finalement un contrôle (thérapeutique) à l'horizon fini (temps limité) qui minimise 
un coût tenant compte des objectifs et des 
contraintes imposées [17, 18, 19, 24] 
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Nous  commençons par présenter le pro-
blème de contrôle optimal. 
Ensuite, nous donnons le résultat principal 
sous forme d’un théorème que nous démon-trons en détails. Nous clôturons cette sec-tion par une conclusion sur le problème de 
contrôle optimal.  
4.1. Présentation du problème de contrôle optimal 
L'utilisation des thérapies associant 2 ou 
plusieurs types de médicaments tels que 
décrits au début du chapitre précédent pro-voque à long terme (= 500 jours), des effets 
secondaires indésirables dont une intolé-
rance croissante de l'organisme des patients, 
une mutation du virus et donc une baisse de 
l'efficacité voire une incapacité à traiter la maladie. 
L'urgence est de contenir le virus à un 
niveau asymptomatique.  
Il y a donc nécessité de trouver un traite-
ment thérapeutique qui ménage la tolérance du patient (faible dose) et de durée réduite 
pour éviter la résistance virale (traitement = 
400 jours en moyenne). 
Le problème est de trouver une posologie 
satisfaisant les objectifs suivants: 
- amener le patient à un état contrôlable par son propre système immunitaire, 
- limiter le traitement dans le temps, 
- administrer au patient les doses les plus faibles possibles. 

L'évolution du virus VIH dans le sang sous l'action de la trithérapie est modélisée par le 
système d'équations différentielles sui-
vantes: 
)

= (1 ) +
= (1 )

= ( )(1 ) +
= (1 )

=
= +

Le contrôle ici est représenté par le traite-
ment  et symbolisé par les inhibiteurs  et 

, il représente l'effet qu'a le traitement sur 
la production virale et l'infectuosité des virus. 
Nous traduisons par ces relations le méca-
nisme selon lequel d'un côté, les RTIs 
bloquent le processus de transcription ARN 
vers ADN dans les cellules infectées, et de 
l'autre, les PIs  perturbent la production 
des protéines virales entrainant comme 
conséquence que les virules produits sont 
déficients. Tous ces faits sont exprimés et traduits par le système d'équations différen-tielles ordinaires ci-dessus. 
Nous nous plaçons dans la situation où 

0 défini par le théorème 1.2  est supérieur 
à  1,  ainsi  nous  ne  sommes  pas  dans  la  ré-
gion de stabilité de l'équilibre sain (sans 
virus, le DFE) et il y a nécessité d'appliquer 
un traitement afin de contrôler l'épidémie. 
Le problème de contrôle optimal consiste à trouver un contrôle minimisant la fonction-
nelle ( , )définie par : 

( , ) = 1
2 ( )

+ 2 + 2
+ 2 (
+ )    (4.1)

L'objectif ici est non seulement de réduire 
les virus actifs  V au bout d'un temps mais aussi pendant [0; T] en agissant sur la 
vitesse de développement viral et en même 
temps en  modérant le coût de contrôle 
(traitement) donné par le couple ( , ).
Le premier terme de cette fonctionnelle 
modélise la population virale V au temps 
final T le deuxième  terme modélise la 
charge virale et la vitesse de développement 
viral accumulées depuis l'instant initial T0 = 0  jusqu'à l'instant final T tandis que le troisième terme modélise le coût de traite-
ment cumulé. 
Ce traitement sur base de l'administration 
des inhibiteurs  et  est supposé être fonc-
tion du temps. 
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Le choix des paramètres positifs , et
dépend d'une évaluation subjective de l'im-
portance relative accordée par le staff cli-
nique entre d'un côté la réduction de la charge virale du patient, la vitesse de déve-
loppement de la population virale et du coût 
du traitement, entendez les effets désa-
gréables du traitement sur le patient. 
Nous cherchons alors le contrôle ( , ) qui minimise  ( , )  sur
Où = {( , ),   0 , 1} avec ,
des fonctions  continues par morceaux sur [0, ]
4.2 Existence et Caractérisation du con-
trôle optimal
Proposition 4.2. Considérons le problème 
de contrôle associé au problème (P.2). Il 
existe un contrôle ( , )  et une solution 
correspondante ( , , , , , ) qui 
minimise ( , ) telque 

( , ) ( , ) = ( , )
Démonstration 
Nous devons vérifier les conditions sui-
vantes :  

1. L’ensemble des contrôles et 
des solutions correspondantes est non vide ; 

2. L’ensemble des contrôles 
est convexe et fermé dans L2
(0; T) ;

3. Le champ de vecteurs du sys-
tème d’état est borné par une 
fonction linéaire du contrôle ; 

4. L’intégrande de la fonction 
coût est convexe ; 

5. Il existe des constantes 1, 2>
0 et  telles que l’intégrande de 
la fonction objectif soit bornée  
par ( 1| |2 + 2| |2 ) 2 - 2

Nous vérifions que = = 0  est  un  con-
trôle dans  et ( , , , , , ) es-
tune solution correspondant au contrôle = = 0 , ainsi, l’ensemble de contrôles 

et des solutions correspondantes est non vide, ce qui vérifie la condition 1. 
L’ensemble  est borné par définition, donc 
la condition 2 est vérifiée. 
Le champ de vecteurs du système (P2) 
vérifie la condition 3 puisqu’il est borné 
(Voir Propriétés de base 2.3.1 avec = = 1  ). 
Il existe 1, 2> 1    vérifiant   
1
2

2( ) + 2
2 + 2

2 +0

2 ( 2 + 2)  ( 1| |2 +0
2| |2 ) 2 2 puisque la variable d’état 
 est  bornée,   pareil  pour et . Nous en 

déduisons alors l’existence d’un contrôle 
optimal ( , ) qui minimise la fonction 
coût  ( , ).
En résumé, pour ce problème de minimisa-tion, la condition de convexité nécessaire 
pour la fonctionnelle  J en ces paramètres ,  (principalement aux 2 dernières) est 
vérifiée. Le membre de droite du système d’équations d’état (P2) est linéairement 
borné à cause du fait qu’à priori la variable 
T est bornée, ce qui implique que les autres 
variables d’état sont aussi bornées. Le faite 
d’être borné et que ces bornes  sont finies garantissent la compacité requise pour 
l’existence du contrôle optimal. La condi-
tion initiale étant V(0) = 0
Assuré de l’existence de ce contrôle opti-mal, on peut alors utiliser le Principe de 
Maximum de Pontryaguin  pour résoudre ce 
problème de contrôle optimal.
Théorème 4.3 
Un contrôle optimal( , )du système 
d'optimalité (P.2) ci-dessus qui minimise la 
fonction objectif (4.1) est caractérisé par  

( ) =  {( + + ( )] ) , 0 }        
( ) =  {( [ ) [ ( + ]

+ ) , 0}
où  la  notation

+ = , > 0
0, 0
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Démonstration  
Assuré de l'existence de ce contrôle optimal 
(voir théorème 4.2 ci dessus), on peut alors utiliser le Principe de Maximum (mini-
mum) de Pontryagin [25] pour résoudre  et 
caractériser ce problème de contrôle opti-
mal. 
Résolution du problème de contrôle optimal 
Soient 1( ), 2( ), 3( ), 4( ),

5( ) et 6( ) les multiplicateurs de La-
grange associés  aux équations d'état (P2) Si 

1( ), 2( ), 3( )et 4( )  sont les 
multiplicateurs (variables) de pénalité atta-
chés au contrôle , , le Lagrangien pour ce 
problème d'optimisation est l'intégrant de la 
fonctionnelle  associé au membre de droite 
des équations d'état (4.1) à travers les va-
riables adjointes aux quelles on ajoute les 
variables de pénalité attachées aux con-traintes sur le contrôle, on a alors l'expres-
sion du Lagrangien: , , , , , , , , , , , ,

, , , , , =
1
2 + 2 + 2 + 2 ( + )

+ + +
( )

+
+ [ (1 ) ]+ [()(1 ) + ]
+ [ ( ) ] + [

] + [ + ] + ( ) ( )
+ ( ) ( ) + ( ) ( ) + ( )

( )        (4.3)
avec ( ) 0, i  =  1,  2,  3,  4 des multiplica-
teurs de pénalité.  
Ces multiplicateurs de pénalité doivent 
satisfaire les conditions suivantes :  

1( ) ( ) = 0, 2( ) ( )
= 0, 3( ) ( )
= 0  4( ) 1

( ) = 0
 De plus, les équations différentielles qui 
gouvernent les variables adjointes sont 

obtenues par différentiation du lagrangien 
(selon le Principe de Minimum): 

1

2

3

4

5

           (4.4)

Pour  ces  variables  adjointes,  on  a  (T)=0 
pour i=1,2,...,6;  ce sont là les conditions de 
transversalité appelées aussi parfois  condi-
tions de mariage. La valeur de la variable 
contrôle optimal peut être caractérisée à 
chaque instant [0, ] en notant qu'elle 
minimise le Lagrangien (Principe du Mini-
mum de Pontryagin) et c'est pourquoi, cette 
variable contrôle optimal devra satisfaire la condition nécessaire  

= 0 avec = ( , )
où = ( , )est la paire optimale, la 
dose optimale de traitement. 
Etant donné que: 

=1
2 + 2 + 2 + 2 ( + )

+ + +
( )

+
+ [ (1 ) ]+ [()(1 ) + ]
+ [ ( ) ] + [

] + [ + ] + ( ) ( )
+ ( ) ( ) + ( ) ( ) + ( )

( )
La différentielle de L par rapport à   et par 
rapport à  donne respectivement: 

= + 1 1 2 1
3( ) 1 + 1
2
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= [ ( ) 1 ]
+ 4 + 5+ 3 4)

Par suite, On a en ( = , = ),+ ( ) += 0[ ( ) ]( ++ +) = 0
D'où on tire: 

= 1+ 3+ ( 2 3)] 1 + 2( 1( )

= [ 4 5) [ ( 1 + ] + 4( 3( )
2 2+

Caractérisation du contrôle optimal 
Dans le but de caractériser complètement le 
contrôle optimal ( , )considérons les 5 
cas suivants: 

- Cas 1: Pour   0 <( ), ( ) <
On  a : 1( ) = 2( ) = 3( ) =

4( ) = 0
D'où  

( ) =  [ + + ( )]

( ) = [ ) [ ( + ]
+

- Cas II: Pour ( ) =( ) = 1
 On a: 1( ) = 3( ) = 0
 Par suite, 

( ) = + + ( )] < 1         
( ) = [ ) [ ( + ]

+ < 1

- Cas IV: Pour ( ) = 0,( ) = 1
 On a: 2( ) = 3( ) = 0

 Par suite, 
( ) = + + ( )] > 0         

( ) = [ ) [ ( + ]
+ < 1

- Cas V: Pour ( ) =1 ( ) = 0
 On a: 1( ) = 4( ) = 0
 Par suite, 

( ) = + + ( )] > 0         
( ) = [ ) [ ( + ]

+ > 0

Les autres cas possibles se ramènent à des 
considérations déjà traitées ci-haut. 
Combinant les cas traités ci-haut et aux-
quels cas se ramènent tous les autres cas 
non traités ici, le contrôle optimal peut donc 
être caractérisé comme suit: 

( ) = max {( + + ( )] ) , 0 }        
( ) = max {( [ ) [ ( + ]

+ ) , 0}

Avec        + = , > 0
0, 0Ainsi, par exemple, pour certaines valeurs 

de t , ( ) + ( ) + ( ) ( ) > 0
Alors ( ) 0, ceci entraine que pour ces 
valeurs, à ces instants, on a 0 < ( )
1. En termes clairs, pour ces valeurs ou 
mieux en ces instants, un traitement à base d’inhibiteurs de transcriptase inverse (RTIs) 
doit être administré au patient afin de blo-
quer le processus de transcription inverse 
d’ARN vers ADN. De même, pour cer-
taines valeurs de , on a que ( ) > 0 et il 
faut pour ces valeurs, administrer au patient 
des inhibiteurs d’intrégras e.
Il  est    important  de  souligner  ici  que,  l'on  
peut  aussi  traiter   le  cas    ( , )
avec < 1 traduisant  le  fait  que  le  traite-ment ne peut pas stopper complètement la 
reproduction virale. 
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Conclusion 
Dans cet article, nous nous sommes livrés à 
modéliser une infection au VIH ; d’abord en expliquant la dynamique de l’évolution du virus VIH dans le sang. Ensuite, nous 
avons  en considérer une trithérapie contre 
cette infection comme contrôle de l'infec-
tion. Une analyse mathématique  sommaire 
de ces modèles a été faite. Un résultat sur le 
taux de reproduction de base  0  est  pré-
senté et démontré. 
Il est un fait que l’utilisation des thérapies associant 2 ou plusieurs types de médica-
ments (c’est le cas de la Trithérapie contre 
le VIH) provoque à long terme, des effets 
secondaires indésirables dont une intolé-
rance croissante de l’organisme des pa-
tients, une mutation du virus et donc une baisse de l’efficacité voire une incapacité à 
traiter le maladie ; il ya donc nécessité de 
trouver un traitement thérapeutique qui 
ménage la tolérance du patient(faible dose) et de durée réduite pour éviter la résistance 
virale. Ces exigences nous ont amené à 
poser ce problème mathématiquement 
comme un problème de contrôle optimal, 
problème que nous résolvons en nous ser-
vant  du  Principe  de  Maximum de  Pontrya-
gin  pour caractériser le contrôle optimal dont l'existence a été établie. Un intéressant 
résultat comportant une caractérisation explicite du contrôle optimal est obtenu, 
présenté, démontré et expliqué. 
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